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Figure 1: DriveAHead is a new dataset for head pose estimation in driving scenarios with one million depth and infrared
images of 20 subjects captured while driving. Each frame is labeled for head position, head orientation and occlusions.

Abstract

Head pose monitoring is an important task for driver as-
sistance systems, since it is a key indicator for human at-
tention and behavior. However, current head pose datasets
either lack complexity or do not adequately represent the
conditions that occur while driving. Therefore, we intro-
duce DriveAHead, a novel dataset designed to develop and
evaluate head pose monitoring algorithms in real driving
conditions. We provide frame-by-frame head pose labels
obtained from a motion-capture system, as well as annota-
tions about occlusions of the driver’s face. To the best of
our knowledge, DriveAHead is the largest publicly avail-
able driver head pose dataset, and also the only one that
provides 2D and 3D data aligned at the pixel level using the
Kinect v2. Existing performance metrics are based on the
mean error without any consideration of the bias towards
one position or another. Here, we suggest a new perfor-
mance metric, named Balanced Mean Angular Error, that
addresses the bias towards the forward looking position ex-
isting in driving datasets. Finally, we present the Head Pose
Network, a deep learning model that achieves better per-
formance than current state-of-the-art algorithms, and we
analyze its performance when using our dataset.

∗Both authors contributed equally to this work.

1. Introduction

In the automotive sector, computer vision allows driver
assistance systems to monitor the interior of the vehicle and
its occupants. To understand the driver’s intentions and pre-
dict future actions, gaze direction plays a crucial role. How-
ever, in car environments eye gaze is difficult to estimate
due to occlusions or large head rotations. Thus, the orienta-
tion and position of the drivers head is used to approximate
the gaze direction. To aid in the task of developing and eval-
uating head pose algorithms in driving scenarios, we present
the DriveAHead Dataset (see Figure 1).

DriveAHead collects data from 20 subjects while driv-
ing. The average length of the sequence is around 30 min-
utes and includes parking maneuvers, driving on the high-
way and through a small town. Reference pose measure-
ments are recorded with a motion capture system that tracks
the orientation and position of the drivers head. We also
include frame-by-frame labels for occlusions, glasses, and
sunglasses. Typically, images from color cameras exhibit
strong variations due to ambient illumination encountered
while driving. Images captured using active illumination,
as used by the Kinect v2, do not have these variations.

DriveAHead provides 5 times more images than the sec-
ond largest available driver head pose dataset (Lisa-P [25]),
while having at least as many subjects as other available
datasets except for Bosphorus [33], which was captured in
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a laboratory setting.
We use DriveAHead to evaluate the performance of cur-

rent state-of-the-art head pose algorithms. Furthermore,
we train neural network models for head rotation estima-
tion on both depth and infrared images. To tackle the bias
towards forward looking while driving, we also provide a
new performance metric, the Balanced Mean Angular Error
(BMAE). Our training experiments reveal that DriveAHead
is complex and large enough to train deep neural networks.
In addition, depth frames generally provide better head pose
accuracy than 2D data, and when using both we see further
improvement of our results.

DriveAHead is the first publicly available real-world
driving dataset containing aligned depth and IR images with
absolute head position and orientation annotations. The
large-scale of the dataset allowed us to create a deep learn-
ing model with state-of-the-art performance for the driving
scenario.

2. Related work
Since head pose estimation has a wide spectrum of ap-

plications, it has received much attention from the research
community. Various head pose datasets are available. In the
following section, we discuss the most relevant ones to our
dataset, see Table 1 for an overview.

2.1. Non-driving head pose datasets

BU [22] is a head pose dataset containing 15k RGB im-
ages of 5 subjects. The dataset is split into sequences with
uniform lighting conditions and more complex video data
where the scenes were exposed to varying lighting condi-
tions. This dataset was recorded in a lab and it provides
continuous head orientation and translation measurements
using a magnetic sensor attached to the subject’s head.

In contrast, the Pointing’04 [13] gaze direction dataset
has three times more subjects, but contains far less number
of images. Pointing’04 does not include continuous head
pose measurements but is organized into 93 discrete head
orientations, totaling 30 video sequences.

Like Pointing’04, the Bosphorus [33] dataset contains
only discrete head orientation labels. With 105 different
subjects, the Bosphorus dataset has the largest number of
subjects. In addition to RGB data, a structured-light based
scanner provides 3D data. The in-lab dataset also contains
various types of occlusion labels: hair, glasses and self-
occlusion.

The BIWI [11] dataset provides 15k depth and RGB
data including orientation and position head measurements.
The dataset is recorded inside a lab environment with an-
notations estimated using a template based approach [40].
While the template based method provides accurate ground
truth for translation and orientation in constrained environ-
ments there is a limitation in case of strong occlusions.

Similar to BIWI, ICT 3dHP [4] uses the Kinect v1 sen-
sor to record depth and RGB images. The head orientation
and position reference measurements are established with a
magnetic sensor mounted on the subject’s head.

The GI4E [3] head pose dataset records the head orien-
tation and position data with a magnetic sensor as well. The
dataset provides multiple RGB video sequences of 10 dif-
ferent subjects.

2.2. Driving head pose datasets

The Lisa-P [25] dataset provides 200k RGB images ob-
tained from 14 subjects in real driving scenarios. Their head
orientation data is obtained from motion capture markers on
the back of the driver’s head. However, this method requires
removing the headrest, which poses a safety risk.

In comparison, CoHMet [39] uses an inertial sensor for
head pose measurements. Variations due to drift have to
be removed manually every 10 seconds. Furthermore, both
datasets only include orientation data.

2.3. Head pose estimation algorithms

Next, we compare various methods for head pose estima-
tion and discuss state-of-the-art deep learning algorithms.

Head pose estimation. In the following, we group head
pose estimation approaches based on the input data. Most
published 2D algorithms either discretize the head pose
space and perform merely a classification task [16, 17] or
estimate the head pose from facial points. To find an ac-
curate head pose from facial landmarks, statistical mod-
els are applied such as Active Appearance Models [10] or
multi-view AAMS [27]. Since one of the key difficulties
in these type of approaches are uncontrolled illuminations
variations, the authors of [29] propose Asymmetric Appear-
ance Modeling to overcome this issue. Breitenstein et al. [9]
present a 3D method to estimate the nose location by ap-
plying 3D shape signatures. The head position and orien-
tation are calculated iteratively by minimizing a cost func-
tion. In their later work, they extend their approach for low
resolution depth data from stereo cameras [8]. Both meth-
ods require GPUs to reach real-time performance. With the
advent of affordable depth sensors, methods using distance
values as an input have increased. In [11] the authors pro-
pose decision forests to find the head orientation and posi-
tion in a frame-by-frame manner. This idea is extended in
several works [28, 34]. An efficient method that applies a
global linear mapping to local binary features is proposed
in [35]. Another idea to reduce the computational cost
and obtain accurate results is by performing subject-specific
tracking [24, 38]. All these methods have so far been eval-
uated only in constrained in-lab environments. To close the
gap towards evaluation on challenging data, our dataset pro-
vides real driving scenarios including occlusions.



BU [22] Pointing’04 [13] Bosphorus [33] BIWI [11, 12] ICT 3dHP [4] Lisa P [25] CoHMEt [39] GI4E [3] DriveAHead

Year 2000 2004 2008 2011 2012 2012 2014 2016 2017
Driving – – – – – X X – X
Publicly available X X X X X X – X X
RGB/grayscale X X X X X X X X –
Depth – – X X X – – – X
IR – – – – – – – – X
Video X X – X X X X X X
Resolution 320×240 384×288 1600×1200 640×480 640×480 640×480 640×360 1280×720 512×424
Pixel aligned N/Ab N/Ab X Xd Xd N/Ab N/Ab N/Ab X
No subjects 5 15 105 20 10 14 N/Ac 10 20
No images 15k 3k 5k 15k 14k 200k 90k 36k 1M
Female / male 0 / 5 1 / 14 45 / 60 6 / 14 6 / 4 N/Ac N/Ac 4 / 6 4 / 16
No video sequences 72 30 N/Aa 24 10 14 N/Ac 120 21
Glasses labels – – X – – – – – X
Sunglasses labels – – – – – – – – X
Occlusion labels – – X – – – – – X
Reference system magnetic marker guided Faceshift [1] magnetic mo-cap inertial magnetic mo-cap
Continuous labels X – – X X X X X X
Head orientation labels X X X X X X X X X
Head position labels X – X X X – – X X

a not applicable since we do not have video
b not applicable since we only have a single image modality

c information not provided by the authors
d transformation between depth and RGB modality available

Table 1: A comparison of various driving and non-driving head pose datasets. This table depicts the characteristics of the
recording modalities, the content of the dataset and the properties of the provided reference labels.

Deep learning methods. On the ImageNet Visual
Recognition Challenge (ILSVRC), neural networks have
shown ground-breaking improvements on the difficult task
of classifying images into one of 1000 possible object cat-
egories [31]. The first neural network model that won the
competition was AlexNet [21]. It outperformed other meth-
ods by a significant margin. In subsequent years, other
neural networks were able to achieve state-of-the-art re-
sults on ImageNet: e.g. VGG [36], GoogLeNet [37] and
ResNet [15]. Furthermore, Misra et al. [26] introduced a
novel sharing unit called cross-stitch for multi-task learn-
ing. More precisely, the authors showed that, by using two
different models that exchange information using the shar-
ing units, they are able to improve the performance on se-
mantic segmentation and surface normal prediction.

So far, only a few works addressed deep learning [2, 30]
for head pose estimation. The authors in [7] presented a
CNN that can be trained on coarse regression labels and pre-
dict continuous head pose on the full range of 360 degrees.
In [30] hough networks combine the idea of hough forests
and convolutional neural networks. The availability of our
large-scale dataset has the potential to apply state-of-the-art
deep learning methods for head pose estimation.

3. DriveAHead dataset

We introduce DriveAHead – a head pose dataset cap-
tured while driving. We capture our dataset using a Kinect
v2 sensor, because it provides us with both infrared and

depth images. To measure the head orientation and posi-
tion we use an accurate 3D motion capture system. This
motion capture system tracks the orientation and position
of a head target. The target consists of several 3D mark-
ers which form a spatial shape (see Figure 3, column 1 and
3). The output of the motion capture system is time syn-
chronized with the Kinect v2 recording device. In total we
record 21 sequences of 20 different subjects. 30 minute
sequences include parking maneuvers, driving on a high-
way and a through a small town. During the driving se-
quence most of the drivers stopped to change between no
glasses or glasses to sunglasses. The driving sequences dur-
ing daytime included different weather conditions sunny,
foggy and rainy. In this section, we describe our data an-
notation method consisting of continuous head pose labels
and binary description labels as previously shown in Fig-
ure 1. Subsequently, we present a dataset analysis and the
evaluation metrics.

3.1. Data annotation

In the following section, we include a detailed descrip-
tion of our reference system providing the orientation and
position of the drivers’ head.

Head coordinate system. A unique head coordinate
system definition is crucial for absolute head position and
orientation measurements. We present a facial landmark
based definition of the head coordinate system. Existing
definitions are either dependent on the complete 3D fa-
cial shape with the origin in the center of the face [11] or
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Figure 2: Description of our Head Coordinate System defi-
nition based on measured 3D facial landmark positions.

point-to-point mapping of general 3D facial landmark po-
sitions [5]. In contrast to a complete 3D facial shape, we
propose a definition that is only dependent on facial land-
marks, which are visible during frontal views. Compared to
the point-to-point mapping, our definition allows the cal-
culation of a unique transformation directly from the in-
dividual facial landmarks. Figure 2 shows our Cartesian
Coordinate System with the axis and 3D landmark posi-
tions li∈{1..8} ∈ R3. We define the head origin as the
center point between the eyes. We calculate it by averaging
the four eye corners (see Figure 2):

o :=
l1 + l2 + l3 + l4

4
.

Furthermore, the x-axis has the origin in o and points in
the direction of the vector px that spans between the middle
point of the two eyes:

px := θ3 + θ4 − (θ1 + θ2),

where
θi :=

li − o
‖li − o‖

.

Each vector is normalized to achieve a stable definition
against error prone measurements.

Similar to the x-axis, we define the y-axis using the ori-
gin o and span it to a chosen point on the person’s head.
In this case, we define this point as the middle point of the
mouth and nose corners:

py :=
l5 + l6 + l7 + l8

4

However, since we define a Cartesian coordinate system, we
have to make sure that all axis are pairwise perpendicular
and the intersection of them lies in the origin. Therefore,
we span a plane perpendicular to the x-axis (see Figure 2)
and by choosing a vector on this plane we guarantee that

the vector is perpendicular to the x-axis. Thus, we simply
pick the vector with the origin in o with the direction to the
closest point to our previously defined py

Finally, the z-axis is the vector, perpendicular to the x
and y-axis, pointing towards the face:

z := x× y

Head pose reference. Next, we describe the steps to
calculate the rotation and translation for each frame i from
the camera coordinate system (c) to head coordinate sys-
tem (h). We define this transformation function with T c→hi .
To calculate this transformation, we make use of two trans-
formation functions that we define next.

First, our reference system measures the orientation and
translation of the target fixed on the head. This target con-
sists of several 3D markers which are tracked from the mo-
tion capture system. The system provides for each frame i
the transformation from the camera coordinate system to the
target coordinate system: T c→ti .

Second, we require the projection of the target coordi-
nate system into the head coordinate system. This handles
the issue that the target has a different position depending on
the shape of the head. We define this as Th→tn for each sub-
ject n individually. To calculate T t→hn , 3D positions of sev-
eral facial landmarks are accurately measured using a spe-
cial motion capture target. The measured facial landmarks
define the orientation and position of this transformation as
previously described (see Figure 2).

Finally, we obtain the ground truth head orientation and
position by combining both transformations:

T c→hi := T c→ti · T t→hn .

Occlusion annotations. In addition to the measured
head orientation and position, we provide description labels
for each image. Supplemental to the measured head orien-
tation and position, we provide for each image description
labels. We asked annotators to provide binary labels for
each image which show if the driver is wearing sunglasses
or glasses. Furthermore, for each image we add manual an-
notations about occlusions. We treat a face as occluded if
at least one of the 68 facial landmarks defined in [32] is not
visible (see right image in Figure 3 for an example). Faces
with self occlusions due to large rotations are not marked
as occluded. Subjects wearing sunglasses or glasses are an-
notated with additional labels and we do not count them as
‘occlusions’.

Dataset splits. We divide our sequences recorded on 20
different subjects into training, validation and testing sets.
The first five subject are used for testing, while the latter are
included in the training set. From the training set we use
two subjects in our validation set for parameter tuning. To



Figure 3: Example images from DriveAHead before (1st and 3rd column) and after preprocessing (2nd and 4th column). Our
preprocessing step removes the white markers by interpolating the pixels of the surrounding.

obtain well-adjusted parts, in our splits we include both fe-
male and male subjects, as well as subjects wearing glasses
and sunglasses.

Preprocessing of our data. To overcome the issue of
the visible white markers we preprocess our training data.
We eliminate these in the training and validation set by fill-
ing these regions with the interpolated values of the sur-
rounding of the markers (see Figure 3). The motion capture
system provides us the translation and rotation of the head
target for each frame. Hence, we know 2D locations of the
markers in the infrared and depth images. The surrounding
of the marker locations is interpolated to achieve smooth re-
gions. This ensures that the models are not able to learn the
head pose based on the locations of the markers. In case of
the test data, we use the raw data to even eliminate methods
learning the interpolated areas.

3.2. Dataset analysis

Next, we describe the dataset statistics and discuss other
available head pose datasets. Figure 3 shows DriveAHead
samples of the aligned depth and infrared images. As shown
in Table 1 our dataset consists of 4 female and 16 male sub-
jects. The dataset contains 21 sequences of 20 different
subjects, one subject is recorded twice. The resolution of
the depth and infrared images is 512×424 with an average
inter pupil distance of 35 pixels. Figure 4 shows the distri-
bution of the data amount dependent on yaw, roll and pitch
angle.

While the yaw and roll angles are centered at zero de-
grees, the pitch is slightly shifted. Furthermore, we manu-
ally labeled all images into three categories: glasses, sun-
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Figure 4: Histogram of DriveAHead frames for yaw, roll
and pitch angle.

glasses and other types of occlusion. We call other types
of occlusion simply ‘occlusion’, while with ‘None’ we
mean faces that do not wear neither glasses or sunglasses.
Figure 5 shows the number of faces grouped into these cat-
egories. Around 26% of faces are occluded by other objects
than glasses and sunglasses. In more than one third of the
dataset drivers are wearing sunglasses, while around 20%
of the faces have glasses.

3.3. Evaluation metrics

In the following, we provide our evaluation metrics to
rate the performance of our models on both head rotation
and the translation task.



214K

404K

383K

41K

173K

105K

299K

117K

266K

1 million face images
20 subjects

Glasses Sunglasses None With Occlusion W/O Occlusion
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faces that are wearing glasses or sunglasses in our dataset.
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Head rotation task. To evaluate the head rotation, we
rely on the angular error between the estimated quaternion
qest and the ground truth quaternion qgt:

ae(qest, qgt) := 2 · arccos(< qest, qgt >).

The orientations during driving scenarios are biased to-
wards frontal orientation, which leads to an unbalanced
amount of different head orientations. To address this, we
introduce the Balanced Mean Angular Error (BMAE) met-
ric with:

BMAE :=
d

k

∑
i

φi,i+d, i ∈ dN ∩ [0, k],

where φi,i+d is the average angular error ae(qest, qgt), for
all data points where the absolute distance of ground truth
angle qgt to the zero quaternion lies between i and i + d.
During our evaluation, we set the section size to d = 5
degrees and k to 75 degrees.

Head translation task. In the case of head translation,
we opt to use the euclidean distance to measure the perfor-
mance of our models. The error is provided in millimeters.

4. Baseline methods
In this section, we describe the head pose methods that

we evaluate on our dataset. We categorize these algo-
rithms in conventional methods that were previously ap-
plied for head pose estimation, and neural networks. To
detect the face regions, we use for all methods the face de-
tector of [19].

4.1. Conventional methods

Additionally to the prior, we use two methods for head
pose estimation: a method that uses grayscale data and a
depth-based approach.

Prior. To show the difficulty of our data we present the
results based on the prior. The prior always predicts the
same rotation and translation regardless of the input image.
More precisely, this method always outputs the average ro-
tation (yaw : 0.9◦, pitch : −15.3◦, roll : −1.8◦) and trans-
lation ~t = (50.7, −143.2, 679.4) mm calculated from our
training set.

Openface [5]. Second, we choose to evaluate a method,
which estimates the head orientation and position based
on facial landmark tracking from grayscale data. For fa-
cial landmark detection Conditional Local Neural Fields
(CLNF) are used. The head pose is calculated using point-
to-point correspondences of a 3D landmark shape. To per-
form a fair comparison we transformed the 3D landmark
shape into the head coordinate system definition described
in section 3.1. The online available approach is trained on
various RGB datasets (Multi-PIE [14], LFPW [6]) and He-
len [23]).

HeHOP [35]. Furthermore, we evaluate a model that is
trained solely on depth data. This approach trains random
forests on local areas to obtain binary features. Using these
binary features a global linear mapping finds the head ori-
entation and position. We train this method on our training
set with the same parameters as proposed in the work of
Schwarz et al. [35].

4.2. Deep learning methods

Since only few deep models for head rotation estima-
tion are available, we supplementary evaluate deep learning
models that were initially proposed for object classification.
However, since in our case head pose estimation is a regres-
sion task, we make several adjustments to these models.

Data augmentation. First, we rescale all detected faces
to a size of 91 × 70 and obtain the final input by randomly
cropping image patches of 88 × 67. As our datasets in-
cludes both depth and infrared images, we will show results
using both modalities.

Models. We introduce a novel head pose network (HPN)
that uses similar to VGG [36] convolutions of size 3 × 3.
However, our network has a far smaller number of param-
eters, since we only use half of the number of neural fil-
ters with 4 maxpooling layers. Furthermore, we have two
fully connected layers each with 2048 neurons and an out-
put layer of size 4. We make use of the fact that we have
two input modalities by combining the depth and IR mod-
els using cross-stitch units [26] after each maxpooling layer.
In comparison to the work of Misra et al. [26] that uses
these sharing units for multi-task learning, we use them to
combine different image modalities. However, we show



that these sharing units can also greatly increase the perfor-
mance of our HPN model for occluded faces. We compare
our model with the N2 network proposed by Ahn et al. [2]
that we trained in the same way and with the same data as
ours.

Loss function. An important aspect of training neural
networks is the loss function. Since in our case we have a
regression problem, we can not use the cross entropy. An
option to define our loss function is to use some distance
metric between the Euler angles [2]. However, Euler angles
suffer from the gimbal lock problem. Thus, we opt to calcu-
late our loss function using quaternions. We define our loss
function between the predicted quaternions p ∈ R4 and the
ground truth g as:

`γ(g, p) := ‖g − np‖+γ · α(p),

where np is the normalization of p. In comparison to [18],
we use the second term: α(p) = ‖p‖ for regularization i.e.
to prevent our predictions to grow too large.

Implementation details. For initializing the weights
of our models, we randomly sample from a normal dis-
tribution, while we set the biases to zero. We evaluated
models both with (i.e. γ > 0) and without any regulariza-
tion (i.e. γ = 0). However, as we have experienced over-
flow when removing the regularization, we solely present
the results with γ > 0. As optimizer we use Adam (Adap-
tive Moment Estimation [20]) with an initial learning rate
of 0.001. Finally, we train our models for 600k iterations
with mini-batches of size 32.

5. Evaluation
In this section, we show the results of the models we have

trained on depth values, IR data and on both modalities. We
also discuss how well our models are able to cope with large
rotations and occlusions (i.e. glasses, sunglasses and other
types of occlusion).

5.1. Head rotation estimation.

In this section, we show the results of multiple head ro-
tation models and the impact of occlusions on their perfor-
mance.

Comparison of different head pose methods. In the
first row of Table 2 we show the BMAE of the prior. As
mentioned previously, we define as prior the average rota-
tion of the faces in our training set. HeHOP [35] was trained
on our depth data and obtained an error far smaller than
the prior. In comparison, Openface* [5] that was trained
on RGB images from different datasets, shows a BMAE
of 20.6 on our IR data. The deep learning models have out-
performed the ‘conventional’ approaches, namely, our HPN
model achieves a BMAE of only 16.4 for IR and 14.2 for
depth data.

Method Modality Fusion All Occlusion

Prior – – 35.7 37.7
Openfacea[5] IR – 20.6 22.7
HeHOP [35] Depth – 26.3 30.1

N2 [2] Depth – 15.9 18.8
N2 [2] IR – 19.2 22.6
N2 [2] Both Late F. 16.7 19.7
N2 [2] Both Conc. 19.0 22.2
HPN Depth – 14.2 16.9
HPN IR – 16.4 20.5
HPN Both Late F. 13.4 17.0
HPN Both Conc. 17.4 21.7
HPN Both Stitch 13.7 16.0
a pretrained version from [5].

Table 2: Balanced Mean Angular Error (BMAE)
of different methods evaluated on our dataset using
depth and IR data.

Fusing depth and IR data. Since our datasets include
both depth and IR data, a fusion between both modalities
have the potential to further increase the performance of our
model. Late fusion is one of the possible methods to com-
bine our two modalities. This consists of simply averaging
the prediction of a depth and a IR based approach. In con-
trast, the concatenation is an early fusion modality, where
we simply concatenate on the channel dimension the depth
with the IR data. Finally, we include our HPN model with
cross-stitch units (introduced in [26]).

Table 2 shows the results of our fusion efforts on both
HPN and on N2 [2]. Late fusion and the stitch units were
able to improve the performance of HPN, while concatena-
tion degrades the performance. As we see in Table 2 the late
fusion was able to improve our model to a BMAE of 13.4,
while the stitch units have a BMAE of 13.7. In case of the
N2 model, the fusion has not performed as well, the con-
catenation and late fusion even worsen the angular error.
Finally, our HPN model using stitch units has outperformed
all other methods with a significant margin in the case for
faces containing occlusions.

Impact of occlusions on the models. The right most
column of Table 2 presents the performance of all methods
on occluded faces. First, the BMAE of the prior is higher
on occluded faces compared to all faces. The reason be-
hind is that occlusions are more frequently accompanied by
large rotations for which our models obtain a higher error.
Since HeHOP [35] relies on a linear model we see a large
drop of performance in case of occlusion. In comparison,
Openface* [5] experience only a small drop in performance
for occluded faces. In case of the neural networks, both
the depth based and as well the IR models show a higher
BMAE. However, the stitch-based HPN are able to outper-
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form all other models, achieving a BMAE of only 16.0,
showing the effectiveness of this fusion modality.

Glasses vs. sunglasses. In Figure 6, we show the per-
formance of our head model HPN with late fusion in re-
gard to different amount of total rotations. We partition the
amount of total rotation into sections of 5 degrees and vi-
sualize the mean angular error of each section. With this
figure we compare the performance of our algorithm for
faces wearing sunglasses and glasses, and for all the faces
that do not contain these types of occlusion (‘none’). While
the sunglasses greatly worsen the results of our model, the
glasses were even able to improve the head pose estimation
in case of small rotations. A reason behind these results is
that the glasses only occlude a small portion of the driver’s
face, and thus both the face and the glasses themselves can
be used as a cue to calculate the head orientation. From this
it follows that glasses are a highly beneficial feature for our
model, leading in an improvement of the performance.

5.2. Head position estimation

The head position is important for precise gaze direc-
tion. To evaluate the performance of the head orientation,
we split the error in x, y and z direction. In Table 3 we
show the results of a method using solely depth data [35]
and a model performing solely on IR data [5]. Whereas the
depth model is trained on the training part of this dataset, the
other method is trained on various other RGB datasets. The
table shows that for both approaches, the z-direction is most
challenging. Since depth data as an input cue gives direct
information about the 3D location of the surface, overall the
depth method outperforms the IR method. However, it is
worth to notice that the 2D approach performs competitive
for the x and y direction.

All Occlusion
Method x y z x y z

Prior 30.9 20.2 36.8 37.8 21.4 51.7
Openfacea [5] 6.4 7.6 27.8 8.5 6.1 47.4
HeHOP [35] 4.1 3.6 5.3 5.9 4.2 6.7
a pretrained version from [5].

Table 3: Euclidean distance in mm of the translation
predictions and ground truth. In the first column we
show the error when using our whole test set, while
in the second one we show the results for occluded
faces only.

6. Conclusion and outlook
In this work, we present DriveAHead, a large-scale

dataset for driver head pose estimation. Our dataset con-
tains more than 10 hours of infrared (IR) and depth im-
ages of drivers’ head poses taken in real driving situations.
Together with precise head pose measurements we provide
also manual annotations about a number of occlusion types.
It can be used to evaluate head pose estimation approaches
under realistic driving conditions. Also, due to its size, it fa-
cilitates the training of deep learning based models for head
pose estimation.

In our paper, we thoroughly discuss the dataset, its acqui-
sition methods, the calibration and alignment of the data,
and its overall statistics. In addition, we evaluate a num-
ber of state of the art and baseline head pose estimation
methods on the dataset. Moreover, we train several deep-
learning based head pose estimation models and show that
the here proposed deep pose estimation network HPN pro-
vides state-of-the-art results. We evaluate the pose estima-
tion methods on both IR and depth images, and we investi-
gate various fusion methods for the two image modalities.
Here, our HPN model using cross-stitch units provides the
best results on occluded faces while late fusion performs
best on all faces.

While the evaluation shows that generally promising
head pose estimation results can be achieved on realistic
data, the analysis of the results also reveals that several chal-
lenges still remain. In particular for large head rotations
and when faces get occluded, which is the case in more
than 25 percent of our dataset, head pose estimation mod-
els have multiple difficulties. We hope that our dataset will
facilitate the development and evaluation of head pose esti-
mation methods addressing a realistic driver scenario.
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