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In this paper, we present a real-time video-based face recognition system. The developed system identi-
fies subjects while they are entering a room. This application scenario poses many challenges. Continu-
ous, uncontrolled variations of facial appearance due to illumination, pose, expression, and occlusion of
non-cooperative subjects need to be handled to allow for successful recognition. In order to achieve this,
the system first detects and tracks the eyes for proper registration. The registered faces are then individ-
ually classified by a local appearance-based face recognition algorithm. The obtained confidence scores
from each classification are progressively combined to provide the identity estimate of the entire
sequence. We introduce three different measures to weight the contribution of each individual frame
to the overall classification decision. They are distance-to-model (DTM), distance-to-second-closest
(DT2ND), and their combination. We have conducted closed-set and open-set identification experiments
on a database of 41 subjects. The experimental results show that the proposed system is able to reach
high correct recognition rates. Besides, it is able to perform facial feature and face detection, tracking,
and recognition in real-time.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Building a robust face recognition system is one of the biggest
challenges in computer vision research. A wide range of possible
application areas, such as access control, surveillance, automatic
photo tagging etc., have fueled significant amount of research ef-
forts on this problem. However, most of the studies on face recog-
nition have been conducted on data that was collected under
controlled conditions [1]. This type of data contains changes in fa-
cial appearance that are generated by modifying a single or a com-
bination of two variation sources in a controlled way. The main
variation sources that have been mainly focused on are expression,
illumination, occlusion, pose and time gap between training and
testing data. Although the studies that have been conducted on this
type of data show the tested algorithms’ performance against a
specific type of facial appearance variation and provide insights
about face recognition under these specific conditions, they are
not sufficient to imitate real-world conditions due to two main rea-
sons. In real-world, the variations of facial appearance are caused
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by combinations of multiple sources in a continuous manner, that
is, for example, one needs to deal with face images from any view
angle, whereas in the databases collected under controlled condi-
tions, there are only discrete head pose classes. Moreover, most
of the face recognition algorithms are tested on already cropped
and aligned face images that are registered according to manually
labeled fiducial points on the faces. However, it is known that er-
rors in the registration of the face deteriorate performance of face
recognition significantly [2,3]. Therefore, a real-world system must
be robust against registration errors that may occur due to imper-
fect fiducial point localization.

The need to determine or verify the identity of a person in a
wide range of application areas has also led to many commercial
face recognition systems. Most of these commercial systems are
mainly focused on security related applications, such as access
control or surveillance [4-8]. In addition, systems with multimedia
focus are also available, such as searching celebrities in videos [9]
or automatic photo tagging [10].

In this paper, extending our previous work [11], we present a
robust real-world face recognition system for smart environments
that identifies the individuals while they are entering a room. The
main motivation to build a face recognition system to monitor the
people entering a room is the wide range of applications in which it
can be used. Both for surveillance of public areas, e.g., airports, and
for people monitoring in smart environments, e.g., smart homes,
one of the best instants to identify the persons is the moment they
are entering the room. This provides face images with resolutions
ranging from 45 x 45 pixels to 100 x 100 pixels. It facilitates face
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detection by providing a smaller number of faces to detect and less
cluttered background, e.g., compared to an airport hall where a
face detection software is expected to detect many faces simulta-
neously in a very crowded and cluttered scene.

1.1. Previous work

Numerous approaches have been developed to recognize faces.
While the main focus was on image-based methods in the begin-
ning [12-14], it shifted more and more towards video-based ap-
proaches in the last years. These are developed in order to
overcome shortcomings of image-based recognizers like sensitivity
to low resolution, pose variations and partial occlusion.

Zhou et al. [15] use sequence importance sampling (SIS) to prop-
agate a joint posterior probability distribution of identity and mo-
tion over time to do tracking and recognition of a person
simultaneously. To overcome continous changes of head pose and
facial expressions, Lee et al. [16] represent the appearance of a per-
son by the means of pose manifolds which are connected by transi-
tion probabilities. In order to model person-specific appearance and
dynamics, Liu and Chen [17] train individual hidden Markov models
(HMM) on eigenface image sequences. In their approach, they use
sequences which resulted in classification results with high confi-
dences to adapt the models. The problem with models that are
based on probability distributions is that they make strong assump-
tions about underlying distributions in the training set. A model
may implicitly learn dependencies which are not characteristic
for the data, if the training set turns out not to be representative.
The counterpart are exemplar-based approaches which generally
do not assume an underlying distribution and are, thus, less af-
fected by non-representative training data.

A large variety of head pose and illumination variations, as well
as occlusion, is encountered in feature films. Arandjelovic and Ziss-
erman [18] built a system to retrieve all faces from a film that match
one or multiple query images. The appearance-based approach uses
a modified Euclidean distance for classification. Instead of doing
frame-based retrieval, Sivic et al. [19] group all face views of a per-
son within the same shot into a face-track, represented as a histo-
gram. Given a query image in one of the scenes, the corresponding

face-track is determined. All matching face-tracks are retrieved
from the whole film by means of a chi-square goodness-of-fit test.

Face recognition systems that are to be deployed in a real-life
scenario usually encounter the problem that they are confronted
with unknown people. Li and Wechsler [20] make use of transduc-
tion to derive a rejection criterion. The k-nearest neighbors of a test
sample are iteratively misclassifed to determine an error distribu-
tion. If classification of the test sample as any of the classes does
not yield a credibility sufficiently different from this distribution,
it is rejected, otherwise it is classified.

1.2. Motivation

The goal of this work is to build a real-time capable face recog-
nition system (FRS) for smart environments. Sample application
areas can be a smart lecture or meeting room, where the partici-
pants can be identified automatically; a smart home, identifying
the family members while they are entering the rooms of the house
or a smart store that can recognize its regular customers. While the
number of subjects to be identified in these scenarios is limited, the
central challenge arises from the aim of achieving unobtrusive rec-
ognition. The face recognition system is supposed to work in the
background without the need of specific user interaction. The peo-
ple to be recognized are not to be disturbed or interrupted in their
actions by the presence of the computer vision system. This is
essential to grant users the freedom to behave naturally. As a con-
sequence of this freedom, difficulties arise from varying pose, like
out-of-plane rotations, and different facial expressions. Accessories
and facial hair can cause partial occlusions. Daylight leads to very
different illumination depending on the time of day, time of year
and weather conditions. In spite of these hardly controllable natural
influences, even the artificial light sources are withdrawn from the
system’s control if unobtrusive recognition as postulated above is to
be implemented. Since the users, i.e., the persons to be recognized,
are not supposed to be restrained by the system, they are free to
switch on and off any light sources that might be available. This
leads to a wide variety of illumination configurations in terms of
light intensity, direction and even color.

In the given scenario, the developed system is deployed at the
entrance door to a seminar room. The camera is located opposite

™

Fig. 1. Exemplary recognition situations showing a variety of different lighting, pose and occlusion conditions. No individual explicitly looks into the camera.
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the door with a distance of approximately six meters. Individuals
are recognized when they enter the room. Depending on their
intention, they turn sideways to get to the seminar area or collect
a print-out, walk straight through to the next room or just stand in
the door frame for some time before they leave. As outlined above,
they are not explicitly cooperating, and recording conditions can
vary largely. Some example views are shown in Fig. 1.

1.3. Our approach

In this paper, we propose a real-time video-based face recogni-
tion system for the mentioned real-world setting. The system con-
sists of a robust eye tracking algorithm, that provides consistent
eye locations to allow face registration, and a video-based face
classification algorithm, that uses registered face images to derive
an identity estimate.

The developed face classification system benefits from a local
appearance-based face representation [21,22] and utilizes the vi-
deo information in order to robustly handle strong variations in
the data. Two main observations are exploited to derive two differ-

ent schemes to weight the contribution of each individual frame to
the overall classification result. The first, distance-to-model (DTM),
takes into account how similar a test sample is to the representa-
tives of the training set. The second, distance-to-second-closest
(DT2ND), reduces the impact of frames which deliver ambiguous
classification results. As a third measure, a combination of the
two schemes is used.

The remainder of this paper is organized as follows. First, the
face detection and video segmentation process is explained in Sec-
tion 2. Face registration method is presented in Section 3. Details
about the feature extraction and classification steps, including
the introduction of the weighting schemes, are given in Section 4.
Our approach is evaluated in Section 5. Section 6 finishes the paper
with a conclusion and future directions.

2. Video segmentation

The face recognition system needs to first detect the instants at
which someone is entering the room. This subsystem, that we
named as face recorder, consists of three major parts: color-based

Video
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Fig. 2. Overview of the data collection system.

Fig. 3. Example of a recorded sequence. Blue box shows the search region and the green box shows the detected face. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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skin segmentation using ratio histogramming in order to select
face candidates, feature-based face detection to confirm or discard
them and a basic tracking method to ensure the complete entering
sequence is recorded. Fig. 2 gives an overview of the system. A
sample recorded sequence can be seen in Fig. 3.

The system’s functional blocks are explained in the following
subsections.

2.1. Skin color segmentation

In the given scenario, the face to be recognized is comparatively
small with respect to the image dimensions of 640 x 480 pixels. In
order to avoid unnecessary processing of the background, it is cru-
cial to concentrate on meaningful areas of the image. To identify
these regions, the image is searched for skin-like colors.

2.1.1. Skin color representation

In this study, a histogram-based model of 128 x 128 is used to
represent the skin color distribution. It is learned from a represen-
tative training set of skin samples which are manually cropped
from images by selecting large skin areas in faces in a set of input
images. It is non-parametric and makes no prior assumption about
the actual distribution of skin colors. The model utilized in this
work is located in the normalized-rg color space.

The advantage of choosing a chrominance-based color space is a
reduced sensitivity to illumination influences. At the same time,
different skin tones, due to different ethnic backgrounds, get more
similar to each other in this representation, forming a compact
cluster in color space.

Based on a physical model for skin-reflectance, Stérring et al.
[23,24] show that the skin color of subjects with different back-
grounds under illumination of varying color temperature generally
forms an eye-brow-like shaped region in the chromaticity plane.
This region is commonly referred to as skin-reflectance locus or,
in short, skin locus.

Fig. 4a visualizes the skin model that we derived from 242
training samples or, to be more precise, 799,785 training pixels,
captured with a Canon VC-C1 camera. The shape of our model is
more elliptic, because the actual shape of the skin locus is cam-
era-dependent [25]. Since in the given scenario, the encountered
face sizes range from approximately 45 x 45 to 100 x 100 pixels,
the model is scaled with respect to an average face size of
70 x 70 pixels. We will refer to this initial model as Mp.

During skin segmentation, we will use the skin locus to limit
model adaptation. To do this, we describe its outline with two qua-
dratic functions f;;;; and fne that we fit to the boundary points of
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the skin distribution, i.e., to the outer-most histogram bins with
non-zero count. The result can be seen in Fig. 4b.
A certain color (r,g) is part of the locus if

8> frin(r) A & < fnax(r) (1a)
with

fin(r) =638 —4.79r +1.15 (1b)
fnax(r) = =3.511% +2.53r — 0.06. (1c)

2.1.2. Image segmentation

The segmentation process is based on histogram backprojec-
tion, a technique that highlights colors in the image which are part
of a histogram-based color model [26]. For a single image, the
probability of a pixel being skin given a color vector (r,g) can be
easily derived by application of Bayes’ rule as described in detail
in [27]. The result is a ratio histogram R, computed from the skin
model histogram S and the image histogram [

5(r.8)
I(r,g)

where r and g denote the histogram bin. Next, R is backprojected
[26] onto the original image, which means, that each pixel i(x,y)
is replaced by R(rxy,g,,), where ry, and g, , denote the normalized
color values of i(x,y). In other words, R is used as lookup-table be-
tween pixel color and skin probability. This results in a gray scale
image which can be interpreted as a probability map of skin pres-
ence. As elaborated in [27], application of Bayes’ rule is only correct,
if applied to the same image from which the histograms were orig-
inally computed. However, in practice, this works reasonably well
for other images taken in a similar scenario. Backprojecting the ratio
histogram instead of the model histogram itself emphasizes colors
that are characteristic for the model. In turn, colors which are part
of the model but which are also common in the background are
weakened.

In [28], it is stated that the background remains noisy in clut-
tered environments but this issue is successfully addressed with
a two-stage thresholding algorithm based on region-growing. The
first stage is a basic binary threshold at level Ty, which is set to
100. The second one is a hysteresis threshold similar to the one
introduced by Canny [29] for edge detection. It uses a lower
threshold value T\, than the initial one but it only adds those pix-
els to the previously created binary image which are 8-connected
to already selected pixels. The thresholded image is less cluttered,
if the backprojection is smoothed using a Gaussian kernel because
this mitigates interlacing effects and noise. Morphological opera-
tors have been omitted for speed reasons. Possible face candidates

p(skin|r,g) = R(r,g) = (2)
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Fig. 4. (a) The skin color distribution as determined from a training set. (b) The skin locus in normalized-rg color space, described by two functions of quadratic order. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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are extracted from the thresholded image using a connected com-
ponents algorithm [30].

The lower threshold T, is determined adaptively. It is chosen
as the average gray level of the non-black pixels of the backprojec-
tion, i.e., as the mean probability of all skin-like colored pixels. This
approach has a major advantage over a constant value of Tj. If the
skin of an entering person is only poorly represented by the current
model, due to color, size or both, only a small percentage of the
skin pixels will be larger than T i, while the majority will have
comparatively small values. If a constant Ty, is chosen too large,
these pixels will not be segmented. Choosing T, small enough
to successfully segment the badly modeled skin pixels, problems
arise when a well-modeled face is encountered. The skin pixels
of such a face will, to a large extent, get high probabilities of being
skin. As a consequence, application of Tyg, already leads to reason-
able segmentation. The small Ty, from before will then add unnec-
essary clutter to the segmented image.

2.1.3. Model adaptation

The model generated from the skin samples, Mo, is only used for
initial detection and is then adapted to the current illumination sit-
uation and the person’s specific skin color. Whenever a face is suc-
cessfully detected in a skin-colored area, the histogram H g of
this area is used to update the current model M;.

Mtﬂ (r,g) = (] - oc)Mt(r,g) + OCHface(rvg) (3)

with update parameter « and bin indexes r and g. With o = 0.4, this
ensures fast adaptation to every specific case. Due to the Gaussian
smoothing, the thresholding process described above leads to seg-
mentation of non-skin pixels close to skin-colored ones, e.g., eyes,
lips and hair. In order to avoid adaptation to these colors, only col-
ors inside the skin locus are used to compute H f,ce.

2.2. Feature-based face and eye detection

In order to detect the faces and the eyes we have used the ap-
proach proposed by Viola and Jones [31]. We use the implementa-
tion of their algorithm from the Open Computer Vision Library
(OpenCV) [32]. We trained our own face and eye detection cas-
cades. To account for in-plane face rotations to some extent, we ro-
tated training face images up to 30°.

2.3. Region-of-interest tracking

A person’s face is not necessarily detected in every frame be-
cause he or she might turn sideways or look down so that the face
detector, which has been trained for quasi-frontal faces, fails. In or-
der to be able to record the whole sequence until the person leaves
the camera’s field of view, a simple yet effective tracking algorithm
has been employed. It is based on the fact that a profile view of a
face still produces a face candidate during the skin segmentation
step. This leads to the underlying assumption that a face candidate
at or close to a position where a face was successfully detected in
previous frames is likely to be this face. Basically, this face candi-
date is accepted as a face if its center lies within the bounding
box of the previously detected face. To account for movement,
the search region is enlarged by a certain amount. The processing
of the next frame will then be restricted to this area which leads
to an enormous speedup as image data is reduced to a fraction.

3. Face registration

As stable eye detections are crucial, eye locations are tracked
over consecutive frames using Kalman filters. Both eyes are tracked
separately. The state of each of the two Kalman filters covers the x-

and y-position of one of the eyes, together with its speed of motion,
vy and v,. The state estimates are supported by measurements of
the (x,y) location of the eyes as determined by eye detectors.

The problem that arises with eye detection is, that an eye detec-
tor with a reasonable detection rate produces quite a few false pos-
itives. This is due to the fact that the intensity distribution of an
eye, as captured by the classifier, is rather simple. Therefore, it
can be observed in other parts of the processed area as well, e.g.,
on curly hair. This is especially true since the detector is trained
with input data which is rotated up to 30°. In order to initialize
the Kalman filters, it is necessary to decide on the “true” detection
among all available ones. It is observed that the majority of false
positives only show up in single frames or pairs of frames. Never-
theless, some of them are detected more consistently. In contrast,
the genuine eye locations are not necessarily detected in every sin-
gle frame.

To solve this problem, the approach depicted in Fig. 5 is imple-
mented [33]. The detections of each eye cascade are used to gener-
ate track hypotheses over consecutive frames. Close detections in
consecutive frames are associated to each other to form a track.
Tracks that do not get updated with a new measurement are
extrapolated based on previous observations. If several detections
are associated with one track, it gets split into two. If two tracks
overlap for several frames, one of them is discarded.

From the set of tracks, eye pairs are generated with the follow-
ing constraints:

Left eye is left of right eye.

Eye distance is larger than a minimum.

Left and right eye move into a similar direction.
Left and right eye move at similar speed.

At this point, the number of possible eye candidates is already
greatly reduced. To verify the eye pair hypotheses, the image is
first rotated, so that the eye positions are on a horizontal line. Next,
a face detector is used to finally confirm or discard the hypothesis.
The rotation is necessary because the face detector is restricted to
upright faces. Without that restriction, the false positive rate
would strongly increase as in the eye detector case. If the face
detector is successful, the Kalman filters are initialized accordingly.
As a fallback solution, eye candidates trigger the Kalman filter ini-
tialization if they appear consistently over a long time. On the one
hand, this is necessary because the face detector may still fail on an
upright face. On the other hand, it is possible because normally
only the true eye locations are consistently detected over a longer
period of time. The face detector approach is able to succeed within
three frames while the fallback solution is triggered after success-
ful detection of a valid eye pair over 15 frames.

Despite the fact that the eye detector is trained to account for
some amount of rotation, it still works best on horizontal eyes,
i.e., upright faces. Therefore, the detection results can be greatly
improved if subsequent face candidates are rotated based on the
Kalman filter prediction prior to any detection/confirmation. If
eye detection fails nevertheless, the prediction can be used as
substitute.

For registration, the face image is rotated to bring the detected
or predicted eye locations into horizontal position. Afterwards, the
image is scaled and cropped to a size of 64 x 64 pixels, so that the
eyes are located at certain coordinates in the resulting image. Fig. 6
shows some samples obtained with this method.

4. Face recognition

A local appearance-based face recognition algorithm is used
[21,22] for face recognition. It is a generic face recognition ap-
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Fig. 5. Initialization of the Kalman filters for eye tracking.

Fig. 6. Sample registered face images with the proposed system.

proach that has been found to be robust against expression, illumi-
nation, and occlusion variations as well as real-world conditions
[34]. The algorithm has been evaluated on several benchmark face
databases, such as AR [35], CMU PIE [36], FRGC [37], Yale B [14]
and Extended Yale B [38] face databases, and found to be signifi-
cantly superior to other generic face recognition algorithms, such
as eigenfaces [12], Fisherfaces [13], embedded hidden Markov
models [39] and Bayesian face recognition [40]. In addition, it
achieved the best recognition rates in the CLEAR 2007 evaluations
[41].

The approach utilizes representation of local facial regions and
combines them at the feature level, which provides conservation
of the spatial relationships. The algorithm uses discrete cosine
transform (DCT) for local appearance representation. There are
several advantages of using the DCT. Its data independent bases
make it very practical to use. There is no need to prepare a repre-
sentative set of training data to compute a subspace. In addition, it
provides frequency information,which is very useful for handling
changes in facial appearance. For instance, it is known that some
frequency bands are useful for combating against illumination
variations. Moreover, we have found that the DCT-based local
appearance representation is better than representations based
on the Karhunen-Loéve, Fourier, Wavelet and Walsh-Hadamard
transforms in terms of face recognition performance [34].

In the proposed approach, a detected and registered face image
is divided into non-overlapping blocks of 8 x 8 pixels size. The rea-
son for choosing a block size of 8 x 8 pixels is to have small enough
blocks in which stationarity is provided and transform complexity
is kept simple on one hand, and to have big enough blocks to pro-
vide sufficient compression on the other hand. Furthermore, the
experiments conducted with different block sizes also showed that
using a block size of 8 x 8 pixels is also beneficial for face recogni-
tion performance. Afterwards, on each 8 x 8 pixels block, the DCT
is performed. The obtained DCT coefficients are ordered using
zig-zag scanning. From the ordered coefficients, the first five AC
coefficients are selected in order to create compact local feature
vectors. The DC coefficient is discarded for illumination normaliza-

tion as suggested in [21]. Furthermore, robustness against illumi-
nation variations is increased by normalizing the local feature
vectors to unit norm [22]. This reduces illumination effects, espe-
cially illumination differences with a gradient pattern, while keep-
ing the essential frequency information. Finally, the local feature
vectors extracted from each block are concatenated to construct
the overall feature vector. Both a discriminative and a generative
approach are followed to classify the so-achieved feature vectors.
With both approaches, individual models are derived for each per-
son. The granularity of these models depends on the respective
amount of available training data. This accounts for the fact that
the real-life data collection setting leads to largely varying
amounts of data among the different persons. Thus, the more often
the system encounters a certain individual, the more detailed this
individual’s model will be, as more variation can be captured. The
block diagram of the face recognition system is given in Fig. 7.

4.1. K-nearest neighbors model

A major advantage of discriminative approaches like K-nearest
neighbors (KNN) is that they do not make an assumption about
the distribution of the underlying data. This allows to build mean-
ingful models with less data than would be necessary to train high-
dimensional generative models like Gaussian mixtures. To deter-
mine the nearest neighbors, the L; norm is employed as distance
measure d(-, -), as it was shown to perform best among several pop-
ular distance metrics in [22]. The k closest neighbors S;,
i=1,2,... k of a test vector x are selected with score s; = d(x, S;).
Because the distances and, thus, the resulting scores can differ lar-
gely between frames, they need to be normalized. This is achieved
with linear min-max normalization [42],

Si — Smin

/
si=1-

i=1,2,...,k (4)
Smax — Smin

which maps the scores to [0,1]. To have equal contribution of each
frame, these scores are re-normalized to °f s, = 1. Of course,
among the k closest representatives, there can be several ones from
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Fig. 7. Overview of the face recognition system.

the same class. Since some people have far fewer representatives
than others, care must be taken that their scores are not dominated
by those. Individual scores are selected by a simple max-rule [43],
which only selects the maximum score for each class.

A sum-rule [43] decision fusion scheme is employed to take
advantage of all frames in a video sequence to decide on the iden-
tity of a subject. Two baseline performances are determined. First,
every single frame is evaluated individually to be able to evaluate
the improvement contributed by video-based classification. Sec-
ond, the baseline video-based recognition performance is deter-
mined by simply adding the scores of all frames.

4.2. Gaussian mixture model

Even though generative models, in our case Gaussian mixture
models (GMM), usually require more training data than discrimi-
native ones, they allow to model the data with probability density
functions (pdf), and, as a consequence, the computation of condi-
tional pdfs.

The Gaussian mixture model approach trains one GMM per
class using an expectation-maximization algorithm [44,45]. Like-
wise the KNN model, the number of components per mixture de-
pends on the number of training samples available for a person.
At runtime, person x is classified as one of the N registered individ-
uals in a maximum log-likelihood manner using

k;
arg max;.y log P(x[i) = arg max;.y logz ot - A (X; W, Zif) (5)
=1
where k; denotes the number of modes per person, «; the mixing
parameters, and f; and ¥; the mean and the variance of the jth
component of person i’s model, respectively. To keep the computa-
tional effort within reasonable bounds, only a diagonal rather than
the full covariance matrix is used.

Three approaches are employed to evaluate the classification
performance of the GMM setup on video input. Similar to the
KNN model, frame-based evaluation determines the baseline per-
formance of the model. Every frame is evaluated on its own based
on a min-max normalization. For the video-based approaches, the
classification of a sequence is made on the final score.

4.2.1. Bayesian inference

Using Bayes’ rule, posterior probabilities are computed for each
class. These posteriors are used as priors in the next frame. The
posterior probability P(i;|xo.) of person i at frame ¢ given the all
the previous observations xq. is calculated as

P(x¢|i¢) - P(i¢|X0.0-1)

P(iflx&f) = P(Xt) (6)

The conditional observation likelihood P(x:i;) is computed by the
GMM for person i, the unconditional one by

P(x0) = > _P(xir) - Plit[Xo-1) (7)

N
i=1

with N being the number of individuals. The priors are initialized
uniformly, i.e.,

. 1
P(ilxo) = 8)
This approach takes into account the temporal dependency by com-
puting the probability to observe a given sequence of input frames.

4.2.2. Bayesian inference with smoothing

Based on the previous approach, the idea of a consistent iden-
tity is introduced as suggested in [15]. The identity of an entering
person does not change but depending on frame and model quality
the classification of single frames can differ from previous ones. As
a consequence, the influence of frames which are not consistent
with the current sequence hypothesis, i.e., the current classifica-
tion for a given sequence, is reduced. Extending Eq. (6), the
smoothed posteriors are calculated as

P(x.|i) - P(i¢lic—1) - P(i¢|X0.0-1)

P(it‘x&[) = P(X[) (9)

with

Plirfir 1) = 1-—€¢ ifi;=i,4 (10)
1= £ otherwise

The amount of smoothing is determined by the smoothing param-
eter €, where smaller values denote stronger smoothing. With a va-
lue of 0, the sequence is basically classified solely based on the first
frame. Nevertheless, values close to O lead to a stabilization of the
sequence hypothesis while still allowing a change to a different
identity as the experiments in the next section will show.

4.3. Frame weighting

Due to the real-life quality of the data, not all frames are suit-
able to classify the subject. Low resolution, large occlusion and
faulty alignment are examples of negative influences on frame
quality. Besides, certain views of a person may simply not be cap-
tured by the model due to little training data or due to training
data that contains too little variation. Two important observations
have been made from the experiments conducted on a parameter
estimation set, which are exploited in order to reduce the impact
of ambiguous frames.

First, for wrong classifications, the distance to the closest repre-
sentative is, on average, larger than for correct ones. Moreover,
badly aligned frames result in larger distances as well. To account
for this, we introduce the weighting scheme distance-to-model
(DTM). The frames f;,i = 1,2,..., are weighted with respect to the
closest representative ¢ with

1 if d(fi,c) < u
wpmm (fi) = { do-p (11)

e 22 otherwise

This weighting function is chosen according to the observed distri-
bution of frame distances d(f;, ¢, correct ), the distances of all frames f;
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to the closest representative ¢y, correc: Of the corresponding correct
class. The distribution, determined on a parameter estimation set,
resembles a normal distribution .4"(-; i, ¢?). To increase robustness
against outliers, i is chosen as sample median and ¢? as median
absolute deviation (MAD)[46]. An example distribution and weight
function is shown in Fig. 8. Using the weight function wpry, the
influence of frames which are not sufficiently close to the model
is reduced.

The second observation is that, in case of misclassification of
frame f;, the difference of the distances A(f;) to the closest and
the second closest representatives is generally smaller than in
the correct case. The distribution of these distances follows
approximately an exponential distribution

&(x;4) =0.1/e™* with 2=0.5 (12)

The weights are then computed as the cumulative distribution func-
tion of &(+)

wprano (fi)) = €(A(f)) =1 — e /Al

An example distribution and weight function is shown in Fig. 9.
This weighting scheme will be referred to as distance-to-second-
closest (DT2ND).

DTM and DT2ND utilize different type of information. DTM
takes into account how similar a test sample is to the representa-
tives of the training set, whereas DT2ND takes into account how
well the closest and second closest representatives are separated.
For example, a badly aligned face image causes a large distance
to the model. However, the best matches can be still well sepa-
rated. Therefore, it is desirable to have both conditions satisfied.
That is, having a small distance to the closest representative, and
a good separation between the closest and second closest repre-
sentatives. On account of this reason, in addition to individual
weighting schemes, a joint weighting scheme is used that employs
the product of wpny and wprnp to weight the frames.

(13)

5. Experiments

In this section the evaluation results of the video segmentation
and face recognition systems are presented and discussed.

5.1. Evaluation of the video segmentation
To assess the performance of the video segmentation algorithm,

four continuous video streams were recorded on three different
days and manually labeled for ground truth. They cover a time

frame of 16.5 h and consist of approximately 1.5 million frames.
Table 1 gives a detailed overview.

Looking at the share of less than one percent of relevant data
within the recorded video, it is obvious that continuous recording
is not an option for sensible data collection, not only concerning
memory requirements but especially in terms of effort and time-
consumption of tedious manual segmentation.

The results in Fig. 10 are given as correct detection rate (CDR) and
false detection rate (FDR). A correct detection is given if a detected
sequence overlaps at least 50% of a labeled one. The total CDR for
different overlap values can be seen from Fig. 11.

5.2. Evaluation of the face recognition system

To evaluate the face recognition system, we used a database
that consists of 2292 video sequences (205,480 frames) of 41 sub-
jects recorded during 6 months. It is chronologically divided into
three sets for training, parameter estimation and testing as listed
in Table 2. Face images are automatically extracted from training
sequences using the registration process outlined in Section 3.
Training data is augmented with virtual samples. These are gener-
ated during the extraction process by artificial perturbations of the
originally detected eye locations by +2 pixels in x- and y-direction.
The face is then aligned according to these new coordinates and
stored in the training database. Since nine locations per eye are
evaluated, this increases the training set size by factor 81. As a con-
sequence, the raw number of training samples is very large which
would slow down the KNN approach. Since many samples from
consecutive frames are very similar, k-means is applied to select
representative exemplars. The clustering is performed for each
person individually.

5.3. Closed-set identification

For closed-set identification, the system is only confronted with
subjects that are registered in the database. The system has to clas-
sify each subject as one of the possible classes. The performance is
measured as correct classification rate (CCR), the percentage of cor-
rectly classified sequences in the test set. As baseline performance,
every single frame is evaluated individually, that is, CCR is calcu-
lated as the percentage of correctly classified frames among all
frames. The results are given in Table 3. Uniform denotes no
weighting and therefore equal contribution of each frame, com-
bined the combination of DTM and DT2ND by weight
multiplication.
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Fig. 8. DTM weight function. (top) Distribution of the distances to the closest representative of the correct class (blue, solid) and to all other classes (green, dashed) and
(bottom) the actual weight function. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Overview of evaluation set. The number of sequences refers to situations in which
somebody is actually entering the room.

Sequence Duration Total no. No. of No. of
(hh:mm:ss) of frames sequences relevant frames
A 02:53:16 259,910 42 2929
B 04:04:13 366,318 12 3233
C 03:25:25 308,124 12 989
D 06:07:38 551,443 63 6220
Total 16:30:32 1,485,795 129 13,371
Sequence CDR (%) FDR (%)

A 92.9 9.3

B 83.3 0.0

C 100.0 0.0

D 95.2 9.1

Total 93.8 7.6

Fig. 10. Detection performance of face recorder. Results in the table are given as
correct detection rate (CDR) and false detection rate (FDR). These measures are based
on sequences rather than frames with an overlap of at least 50%.

Video-based evaluation outperforms frame-based evaluation
since the increased amount of available data helps to resolve some
ambiguities. Obviously, both weighting schemes improve the clas-
sification performance over uniform weighting. The combination
takes advantage of both and performs better. The increase is
slightly larger for DTM, as it assigns smaller weights to frames that
are not similar enough to the representatives of the training set.
DT2ND, in contrast, reduces the impact of ambiguous frames, i.e.,
frames which yield similar scores for the top two candidates, inde-
pendent of how well the “face” is modeled. In fact, a badly aligned
image can lead to a distinct score, but it is likely to have a large dis-
tance to the model. DTM is able to handle this case, DT2ND is not.
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Fig. 11. Detection performance of face recorder with respect to overlap ratio.

Table 2
Sizes of the three subsets.

Number of sequences

Training set 905

Parameter set 386

Test set 1001

Total 2292
Table 3

Closed-set correct classification results with different fusion schemes. Smooth GMM
uses £ = 107",

KNN CCR (%) GMM CCR (%)
Frame-based 68.4 Frame-based 62.7
Uniform 90.0 Uniform 86.7
DTM 92.0 Smooth 87.8
DT2ND 91.3 DTM 90.6
Combined 92.5 DT2ND 89.1
Combined 91.8

Nevertheless, reduction of ambiguity leads to better performance
over uniform weighting as well.

As far as the different models are concerned, the discriminative
approaches perform better than the generative ones. Since para-
metric models like GMMs need more training data with increasing
dimensionality, this is possibly caused by insufficient training data
for some individuals which can prevent derivation of meaningful
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models. Besides, the number of mixture components might not be
sufficient to approximate the underlying probability distribution.
The discriminative models are less affected by little training data,
as they classify new data only based on existing data, without mak-
ing any assumptions about its distribution.

To investigate the robustness of the results, it is worth looking
at the results including rank-2 and rank-3 classifications, i.e., cases
in which the correct identity is among the best two or three
hypotheses. As clearly depicted in Fig. 12 and Table 4, the frame-
based approach often gets close to the correct decision. However,
it has to decide on the identity even in the case that the single fea-
ture vector is of questionable quality. The approach lacks an oppor-
tunity to support or discard the hypothesis using additional data as
done by the sequence-based methods. These are able to exploit the
temporal dependency of consecutive frames and to promote the
rank-2 and rank-3 classifications of the frame-based models to first
place. Since many frames contribute to the decision, the overall
performance improvement is larger than the difference between
the correct and rank-3 classifications in the frame-based approach.

The more frames can be evaluated, the more likely it is to obtain
a correct result. This gets confirmed by the observation that the
average length of correctly classified sequences is larger - 39
frames - than that of misclassified ones with 28 frames as depicted
in Fig. 13.

To justify the increased training efforts caused by the larger
training set size, an experiment was conducted to compare the rec-
ognition performance using augmented and unaugmented training
data. The comparison can only cover the KNN models as it is not
possible to train appropriate GMMs due to the fact that many indi-
viduals have fewer images in the training set than the feature vec-
tor’s dimensionality. As listed in Table 5, recognition performance
increases significantly in all three KNN cases. This shows that the
data augmentation is well worth the increased memory and time
resources. Adding noise to detected eye locations leads to samples
of different scale and rotation which increases the variation band-
width and reduces the influence of possible registration errors.
Since the data set size is increased by factor 81, even persons with
few genuine training images can be modeled appropriately.

5.4. Open-set identification

This task extends the previous one by the difficulty that un-
known people, i.e., persons which are not registered in the data-
base, can be encountered. Therefore, prior to classification as one
of the possible identities, the system has to decide whether a per-
son is known or unknown. Impostors are to be rejected, while gen-
uine members of the database need to be accepted and classified
correctly. To model this task with the existing data set, the system

Table 4
Correct recognition rate by rank for the KNN models.
Frame-based Uniform Combined
Rank-1 68.4 90.9 92.5
Rank-2 76.5 94.8 95.6
Rank-3 81.1 96.2 96.7

is trained in a leave-one-out manner. One person at a time is re-
moved from the database and is presented to the system as impos-
tor during the subsequent evaluation on all sequences. This process
is repeated N times, so that each person takes the impostor role
once. The acceptance-rejection criterion is a threshold on the con-
fidence of the classification, which is a value between 0 and 1. If
the confidence is too low, the person is rejected.

A measure of confidence of the classification is derived by min-
max normalization (see Eq. (4)) of the accumulated scores at the
end of the sequence. The frame-based scores are already normal-
ized and can serve as confidence measure without further
processing.

Compared to closed-set identification, two more error types can
occur. Additional to false classifications, the system can errone-
ously either reject genuine identities or accept impostors. All three
errors have to be traded-off against each other as it is not possible
to minimize them at the same time. For this reason, a different per-
formance measure is necessary. The employed equal error rate
(EER) denotes the minimum combined error rate. It is reached
when

FAR = FRR + FCR (14)

i.e.,, when the false acceptance rate (FAR) among the impostors is
equal to the sum of the false rejection rate (FRR) and the false classi-
fication rate (FCR) among the registered persons. The rates are de-
fined as

FAR:“i.Le_med N

FRR:@ "
4

FCR — Memisclassified .

ng.accepted

where n denotes number of frames or sequences and the subscripts
g and i denote genuine or impostor samples, respectively.

Looking at the results in Fig. 14, it can be seen that uniform and
combined weighting form a lower and upper bound for the individ-
ual weighting schemes.

The two weighting schemes affect different parts of the ROC
curve. The DTM scheme improves the recognition rate for high

Frame-based
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Combined

B rank-1
[ Jrank-2f]
B rank-3
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Fig. 12. Correct recognition rate by rank for the KNN models.
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Fig. 13. Box plot showing the distribution of sequence lengths for correct and false classifications. The box denotes the median as well as the lower and upper quartiles
whereas the “whiskers” denote the range of values. Outliers are marked by crosses. The plot is based on results achieved with the combined KNN approach.

Table 5
Influence of data set augmentation with virtual samples. All results improve
significantly. Significance was computed with crosstabulation.

Frame-based Uniform Combined
Unaugmented (%) 56.6 87.6 88.2
Augmented (%) 68.4 90.9 92.5
p-value 0.00 0.02 0.00
Significantly better %4 %4 %4

false acceptance rates. A FAR of 100 percent is equivalent to closed-
set identification in terms of the ROC curve because the CCR can
only be computed over genuine samples. This confirms the results
from the closed-set experiment.

DTM reduces the false classification rate, but it is not able to dis-
criminate between known and unknown persons as the feature
vector of an impostor can be indeed very similar to the training
representatives. Therefore, as can be seen from Table 6, the EER
is approximately the same than in the unweighted case.

Genuine identities, however, usually have smaller distances to
one single class representative than to all other classes in the mod-
el, while impostors are similarly close to multiple classes (cf.
Fig. 9). This ambiguity is exploited by the DT2ND weighting
scheme to identify impostors. Their scores are reduced, leading
to smaller confidence values, which in turn result in better rejec-
tion. The same threshold causes rejection of more impostors than
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Fig. 14. ROC curve of open-set recognition results for the KNN approach. The black
line denotes equal error.

Table 6

Open-set equal error rates. Smooth GMM uses & = 107°.
KNN EER (%) GMM EER (%)
Frame-based 50.0 Frame-based 43.7
Uniform 234 Uniform 23.0
DTM 233 Smooth 18.7
DT2ND 213 DTM 20.2
Combined 21.0 DT2ND 20.5

Combined 18.0

in the unweighted case or, to put it the other way round, the
threshold can be reduced causing fewer false rejections. As a con-
sequence, the EER is reduced in open-set identification.

Looking at Fig. 15, the observations are similar if the GMM out-
put is used as similarity measure. DTM and DT2ND improve the re-
sults over uniform weighting. DTM outperforms DT2ND for high
FARs (i.e., getting closer to closed-set identification). The combina-
tion of both weighting approaches is able to join the performance
improvements and leads to the lowest EER of all runs, as can be
seen from Table 6.

To examine the effects of the constraint that a person’s identity
does not change within a sequence, as formulated in Section 4.2,
the Smooth GMM model is evaluated at different levels of smooth-
ing. The smaller the e-value, the stronger is the constraint. As
Fig. 16 shows, a moderate amount of smoothing improves the
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Fig. 15. ROC curve of of open-set recognition results for the GMM approach. The
black line denotes equal error.
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Fig. 16. Influence of identity smoothing. The values in parentheses are the e-values
used for smoothing in Eq. (9). The unsmoothed curve corresponds to the Uniform-
GMM model.

open-set identification performance. Small numbers of ambiguous
and inconsistent frames do not derogate the currently best score
while many consistent frames increase the confidence of the deci-
sion. As a consequence, a smoothed classification result is more
distinct than an unsmoothed one. Since smoothing generally favors
sequences with consistent frame hypotheses over ones with incon-
sistent classifications, it does not necessarily reduce the number of
false classifications but the augmented confidence leads to a reduc-
tion of the false rejection rate. In contrast to genuine identities,
impostors often cause inconsistent frame scores, so that the result-
ing low confidence leads to a proper rejection.

However, if the smoothing factor is chosen too small, the sys-
tem gets stuck on the decision of the first frames. Even if all subse-
quent frames are classified as a single different identity, this
person’s video-based score will grow only marginally because the
frame-based scores are practically reduced to zero.

Based on the observation that the first frames are generally of
low quality, especially due to low resolution, it would be possible
to omit them in the classification process. This assumption is not
included into the current system as this would restrict the system
to this specific door scenario.
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Fig. 17. Analysis of the contribution of FRR and FCR to the overall error rate of
Combined-KNN. The black line denotes equal error.

Since the ROC curves show the CCR depending on the FAR, the
question arises to which extent each of the other two types of er-
ror, false rejection and false classification, impair classification per-
formance. To investigate this, Fig. 17 plots FRR and FCR separately
for Combined-KNN. The lower bound corresponds to the CCR as de-
picted in Fig. 14. At the point of equal error, there remains only a
minimal FCR of about 1 percent while the major part of about 20
percent is caused by false rejection of genuine identities. This re-
flects the difficulty of separating impostors and genuines as they
represent arbitrary subsets of all possible faces.

6. Conclusion

In this study, a real-time video-based face recognition system is
presented. The system is developed for smart environment appli-
cations, such as for smart homes or for smart stores, in which
the main challenge is to perform unobtrusive identification with-
out requiring the cooperation of the person to be identified. The
key to this unaware recognition is a system that is able to process
data under everyday conditions and to accomplish this in real-
time. Violations of these requirements necessarily interrupt the
persons to be identified or restrict them in their actions. An exam-
ple of such a restriction is the necessity to stop for a moment and
watch straight at the camera while not being allowed to wear any
accessories in order to be recognized. As shown in this work, the
proposed system is able to fulfill both requirements.

A large set of segmented data was automatically collected un-
der real-life conditions including extreme variations in illumina-
tion, expression, pose, appearance or partial occlusion. In this
system, robust registration is achieved by eye tracking which com-
pensates for eye detection failures. These failures are mainly
caused by pose variations and changing illumination.

Three weighting schemes have been introduced to weight the
contribution of individual frames in order to improve the classifi-
cation performance. The first, distance-to-model, DTM, takes into
account how similar a test sample is to the representatives of the
training set and therefore reduces the negative impact of unfamil-
iar data (e.g. due to bad recording conditions or faulty face registra-
tion). The second, distance-to-second-closest, DT2ND, reduces the
influence of frames which deliver ambiguous classification results.
Finally, the combination of DTM and DT2ND was shown to join the
benefits of both.

Extensive experiments on a video database of 41 non-coopera-
tive subjects have been conducted for both closed-set and open-
set identification tasks. The results show that the combination of vi-
deo-based face recognition with a local appearance-based approach
is able to handle a large number of variations of facial appearance
caused by illumination, pose, expression, and occlusion.

The proposed face recognition system requires on average
37 ms per frame on a Pentium 4 with 3 GHz and 1 GB RAM. Thus,
it is able to process 25 frames per second which is the frame rate of
the used camera.

In the future, detection of impostors in the open-set identifica-
tion task needs further investigation. We plan to incorporate a
measure which considers the consistency of individual frame-
based results over the whole sequence. However, it has to be kept
in mind that impostor detection is a non-trivial task because it re-
quires the separation of an arbitrary subset of all possible faces
from the rest.
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