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Abstract— Three-dimensional environment perception is a
key element of autonomous driving and driver assistance
systems. A common image based approach to determine three-
dimensional scene information is stereo matching, which is
limited by the stereo camera baseline. In contrast to stereo
matching based methods, we present an approach to recon-
struct three-dimensional object trajectories combining temporal
adjacent views for object point triangulation. We track two-
dimensional object shapes on pixel level exploiting instance-
aware semantic segmentation techniques and optical flow cues.
We apply Structure from Motion (SfM) to object and back-
ground images to determine initial camera poses relative to
object instances as well as background structures and refine
the initial SfM results by integrating stereo camera constraints
using factor graphs. We compute object trajectories using stereo
sequence constraints of object and background reconstructions.
We show qualitative results using publicly available video data
of driving sequences. Due to the lack of suitable ground truth,
we create a synthetic benchmark dataset of stereo sequences
with vehicles in urban environments. Our algorithm achieves
an average trajectory error of 0.09 meter using the dataset.
The dataset is on our websiteﬂ publicly available.

I. INTRODUCTION
A. Trajectory Reconstruction

Three-dimensional object motion trajectories are crucial
for autonomous driving and driver assistance systems
to avoid collisions and to perform path planing. There
is a variety of sensor types to capture three-dimensional
information corresponding to moving objects. In comparison
to active sensors like Lidar or Radar, cameras reduce weight
and size of the system and lower production costs. We
propose an approach to reconstruct three-dimensional object
motion trajectories using two cameras as sensors. Previous
methods [1]], [2] use stereo matching to determine 3D
objects points. However, 3D stereo measurement precision
deteriorates quickly with camera distance [3l], [4] due to
limited stereo camera baselines. To tackle this problem
we combine temporal adjacent views using Structure
from Motion, which allows us to exploit virtual camera
baselines that are not restricted by the stereo camera setup.
For example, even small object rotations may result in
big virtual camera baseline differences. In many scenes,
objects cover only a minority of pixels. This increases the
difficulty of reconstructing object motion trajectories using
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image data. In such cases, current state-of-the-art Structure
from Motion (SfM) approaches [5]], [6] consider moving
object observations most likely as outliers and reconstruct
background structures instead. Previous works, e.g. [7], [8],
detect moving objects by applying motion segmentation
or keypoint tracking. Recent progress in instance-aware
semantic segmentation [9]], [10] and optical flow [11]], [12]]
techniques allow for object tracking on pixel level [13] and
handle stationary objects naturally. We extend the approach
in [13] to track objects on pixel level in stereo video data.
Stereo object tracking allows us to compute object and
background reconstructions using StM [3]], [6l]. We refine the
StM reconstruction results by exploiting stereo projection
constraints using factor graphs [14]. Known stereo camera
baselines resolve the scale ambiguity between object and
background reconstruction and allow us to compute metric
object motion trajectories. In contrast to stereo matching
based methods, our approach allows to build an holistic
models for each moving object.

B. Related Work

Our pipeline uses semantic segmentation and structure
from motion to reconstruct object trajectories. [15] presents
Fully Convolutional Networks for semantic segmentation,
which are trained end-to-end. [9], [10] extended this con-
cept and proposed instance-aware semantic segmentation
approaches. We considered [9], [16] and [10] to detect
objects on pixel level as well as [12] and [11] to compute
the optical flow of adjacent images. We observe that [10] and
[12] achieve the best segmentation and optical flow results.
[12] computes consistent optical flow vectors also for large
object displacements.

The field of Structure from Motion (SfM) consists of iterative
[L7], (5], [6], [18] and global approaches [3], [18]]. In our
experiments [6] and [3]] created the most reliable object and
background reconstructions.

A factor graph is a suitable graphical model to represent
StM and Simultaneous Localization and Mapping (SLAM)
problems. We use factor graphs to model stereo camera
constraints. We apply state-of-the-art SfM libraries [5], [6]]
to perform data association and initialization. We use the
GTSAM library [19] to define factor graphs corresponding
to SfM reconstructions. GTSAM [19] does not provide
functionality to perform data association or initialization.
Previous works [20], [7], [21], [22], [23] proposed methods
to reconstruct object and vehicle trajectories in monocular
video data. In contrast to our approach, these methods
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need to define object motion constraints to tackle the scale
ambiguity inherent to monocular image based reconstruc-
tions. [22] presents a synthetic dataset to evaluate the
reconstruction of vehicle trajectories in monocular video
data quantitatively. The authors in [[I] reconstruct vehicle
shapes and trajectories in stereo video data using off-the-
shelf ego-motion and stereo matching based reconstruction
algorithms. [2] presents a combination of object proposals,
stereo matching, visual odometry and scene flow to compute
three-dimensional vehicle tracks in traffic scenes. We use
the stereo matching based object trajectory reconstruction
method proposed in [24] as baseline. We considered different
off-the-shelf stereo matching methods [25[], [26], [27] to
compute the corresponding disparity values, since usage of
and fair comparisons to ConvNet based stereo matching
approaches like [28], [29] are limited due to the lack of pre-
trained models and required fine-tuning in the target domain.
We observe that [26] computes more stable object specific
disparities than [235], [27].

C. Contribution

The core contributions of this work are as follows. (1)
We present a new framework to reconstruct the three-
dimensional trajectory of moving instances of known object
categories in stereo video data leveraging state-of-the-art se-
mantic segmentation and structure from motion approaches.
Our method allows to track two-dimensional object shapes
on pixel level in stereo image sequences. In contrast to
stereo matching methods, our approach leverages views from
different time steps for object point triangulation. (2) We
show how stereo constraints modeled with factor graphs
improve inital SfM reconstructions. This SfM refinement step
allows us to determine metric object motion trajectories. (3)
We create a benchmark dataset of synthetic stereo sequences
capturing driving vehicles in urban environments suitable
to evaluate image based vehicle trajectory reconstruction
methods quantitatively. (4) We demonstrate the usefulness of
our method by showing qualitative results of reconstructed
object motion trajectories using publicly available driving
sequences.

II. OBJECT MOTION TRAJECTORY RECONSTRUCTION

The pipeline of our approach is shown in Fig. [I] The
input is an ordered stereo image sequence. We track two-
dimensional object shapes on pixel level across video se-
quences exploiting instance-aware semantic segmentation
[16] to identify object shapes and optical flow [11] to
associate extracted object shapes in corresponding stereo
images and subsequent frames. Without loss of generality,
we describe the motion trajectory reconstruction of single
objects. We apply SfM [3], [6] to object and background
images as shown in Fig. [I] Object images denote pictures
containing only color information of single object instances.
Similarly, background images show only environment struc-
tures. We combine information of object and background
SfM reconstructions to determine consistent object motion
trajectories. We use factor graphs [14] to refine object and
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Fig. 1: Overview of the trajectory reconstruction pipeline.
Boxes with corners denote computation results and boxes
with rounded corners denote computation steps.
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(a) Visualization of the general
three-dimensional ~ assignment
problem as 3-partite graph.

(b) Visualization of the stereo
MOT assignment problem as 4-
partite graph.

Fig. 2: Comparison of the three-dimensional and the stereo
MOT assignment problem. The circles visualize the partition
of the nodes of the corresponding multipartite graph. There
exist no edges between nodes of the same subset. The
lines denote that elements of a subset share edges with the
elements of a different subset. D; ;, D; ,., D; 11, and D; 1,
denote the objects detections visible in the left and right
image at time ¢ and 7 + 1.

background reconstructions, which allows us to use stereo
camera baseline to resolve the scale ambiguity of the SfM
results.

Point triangulation using stereo correspondences is limited
by the baseline of the corresponding stereo camera [4]. Our
method circumvents this problem by exploiting information
of subsequent frames to triangulate 3D points. Already small
object rotations may result in big virtual camera baseline
changes. In contrast to stereo matching methods, the pro-
posed approach builds object models reflecting the informa-
tion of each frame. To build an holistic object model with
stereo matching requires additional steps to fuse triangulated
points of subsequent frames.

A. Stereo Online Multiple Object Tracking

The proposed stereo Multiple Object Tracking (MOT) ap-
proach extends the monocular tracking algorithm presented
in [13]] and is depicted in Fig. E} [L3] use optical flow matches
to associate instance-aware semantic segmentations between
subsequent frames to track the two-dimensional shape of
objects of known categories on pixel level across monocular
video sequences. This approach allows to naturally associate
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Fig. 3: Scheme of the stereo object tracking algorithm. The variables have the following meaning. I: image, OF": optical
flow, D: detection, P: prediction, T": tracker state, ¢: image index, I: left, r: right, In: left-next, Ir: left-right. Arrows show
the relation of computation steps. A computation step depends on the results connected with incoming arrows. The tracked
objects T;; at time ¢ in the left image are predicted to the next image using the optical flow OF; ;,, of image I;; and I; 4 ;.
The predictions F; ;,, are associated with the detections D; 1 ; to update the left tracker state. Simultaneously, the tracked
object objects T; ; are predicted to the corresponding right image of the same time step using the optical flow OF; ;.. The
predictions F; ;, are associated with the detections D, , to compute the tracker state T; , of the objects in right image at
time step ¢. Corresponding objects in the left and the right tracker state T;; and T} , share the same identifier, which is not
necessarily the case for detections in D;; and D; ,. The used optical flow color coding is defined in [30].

objects in subsequent frames as well as objects in left and
right images of the stereo camera. uses the Kuhn-
Munkres algorithm to solve the two-dimensional assign-
ment problem (AP), i.e. to determine object associations of
objects between image pairs. The two-dimensional AP con-
sists of finding a maximum weight matching in a weighted
bipartite (or 2-partite) graph. An improved version of the
Kuhn-Munkres algorithm solves the two-dimensional
AP in O(n?), where n is the number of elements to be
assigned. There exist different three-dimensional extensions
of the two-dimensional AP and a few special cases can be
solved in polynomial time [33]]. However, the general three-
dimensional AP is NP-hard [34]. In the stereo MOT case
object instances in the left image I;; and the right image
I; - at time ¢ as well as the object instances in the left
image I;;1; and the right image I;; , at time ¢+ 1 must be

associated. Therefore, the stereo MOT AP corresponds to the
general four-dimensional assignment problem (see Fig. [2(b)).
Fig. 2(a)] and 2(b)] show that the stereo MOT AP comprises
the general three-dimensional AP and is therefore NP-hard.
We do not solve the associations of I; ;, I; 111, I; » and I;1q
simultaneously, since (a) the stereo MOT AP is NP-hard and
(b) the simultaneous determination of two subsequent stereo
image pairs requires the computation of three optical flow
fields in addition to OF; ;. and OF;;,. Here, OF;;, and
OF; 1, denote the optical flow between image I;; and I; ,
as well as I;; and I;y1,;. Instead, we apply the following
greedy approximation of the stereo MOT AP by solving
two two-dimensional assignment problems. This allows us
to determine object correspondences in I; ; and I;, as well
as I;; and I;1q1; in O(n?).

We associate object instances in the left images I; ; and I; 1 ;



using the object affinity matrix presented in [13]] as input for
the Kuhn-Munkres algorithm to compute the tracker state
Ti+1,;. In this case the affinity matrix is defined according
to (I). Here, O, 4 denotes the overlap of the prediction with
index p in FP;;, and the detection with index d in D;yq .
Let n,, and n4 denote the number of predictions in P; ;,, and
the number of detections in D;41 ;.

01,1 Ol,d Ol,nd
At = Op,l Op,d Op,nd (l)
Onp,l Onp,d Onp,nd

Fig. E] shows an example for P;;, and D, ;. The tracker
state T; 1, contains only tracks of object instances in images
corresponding to the left camera. We use the optical flow
between left and right images OFjyi ;- to associate the
tracker state of left images Tj1;,; with objects visible in
the corresponding right image. The association between
predictions F;1 1 ;, and detections D; 1 , in the right images
are also computed using an affinity matrix and the Kuhn-
Munkres algorithm. In this case O, 4 denotes the overlap
of prediction p in Py and detection d in Djiq,. ny
denotes the number of predictions in P; 1, and n4 denotes
the number of detections in D;; ,. The overlap O, 4 is an
affinity measure that reflects locality and visual similarity.

B. Object Motion Trajectory Computation

We follow the pipeline outlined in Fig. [I] and apply
SfM simultaneously to object and background images. We
denote corresponding reconstruction results with s fm(®) and
sfm(® . Each object image has a corresponding background
image, i.e. the background image extracted from the same
input frame. We consider only object-background-cameras-
pairs that are part of sfm(® as well as sfm(®, ie. we
remove cameras without corresponding ob{ject or background
camera from the reconstructions. Let ojo) denote the 3D
points contained in sfm(®). The superscript (o) in 05-0)
describes the corresponding coordinate frame. The variable
7 denotes the index of the points in the object point cloud.
We combine information of object-background-image-pairs
to define object motion trajectories parameterized by a single
parameter. The object reconstruction sfm(®) contains object
point positions 0;0) as well as corresponding camera centers
CEO) and rotations RZ(-O) € SO(3). We convert the object
points 05»0) defined in the coordinate frame system (CFS)

of the object reconstruction to points o\’ in the camera

P— (i) _ o) (o) (o)
CFS of camera ¢ using o,/ = R,” - (oj - c; ). We

use the camera center cgb) and the corresponding rotation

Rgb) € SO(3) contained in the background reconstruction

sfm(® to transform object points in camera c%ordinates to
the background CFS using o§b2) = c” +R" . 05-1). The
transformation between points in the object CFS and points

in the background CFS is defined in (2).

o) = +ROT RO (o ) @
The naive combination of object and background reconstruc-
tion results in inconsistent object motion trajectories due to
the scale ambiguity of SfM [35]. We adjust the scale between
object and background reconstruction using the baseline of
the stereo cameras in object and background reconstructions
as reference. We can recover the full object motion trajectory
computing (2) for each object-background-image-pair. We
use ogf’g of all cameras and object points as representation
of the object motion trajectory.

C. SfM Stereo Refinement and Outlier Removal

Reconstructions of dynamic objects using state-of-the-
art SfM tools occasionally contain incorrectly registered
cameras as well as incorrectly triangulated object points
due to small object sizes, changing illumination and re-
flecting surfaces. Fig. |7] shows a few examples. Incorrect
camera baselines hamper the correct estimation of the scale
ratio between object and background reconstruction. We
model stereo projection constraints to refine the previously
computed SfM reconstructions by leveraging factor graphs
[14]. In the following, we describe the factor graph based
refinement for the object reconstruction. The refinement of
the background reconstruction is performed analogously.

A factor graph is a bipartite graph G = (F,0,E) with
two node types: factor nodes f;, € F and variable nodes
0, € O. The edges e;; € £ connect factor and variable
nodes. A factor graph is a graphical model used to represent
the factorization of a function f according to equation (3),

f©)=T] fx(6r) 3)
k

where Oy is the set of variables 6; adjacent to f, i.e. each
0; € Oy is connected with an edge to fx.

In our case the variable nodes © represent stereo camera
poses 65 and triangulated object points 6,. We use a set
of stereo factors fi to reflect the relation of triangulated
object points projected into specific stereo cameras and their
corresponding observations. In order to map the observation
constraints in the SfM result onto the stereo factors, we
determine for each triangulated object point in the SfM
reconstruction all pairs of corresponding feature observa-
tions m; and m, of the left and the right image of the
same time step. We add stereo projection factors of the
form fi(6p,0s; My p, My p, My, K, b), where my p, and m, 5,
denote the horizontal pixel positions of the measurements m;
and m,.. m,, denotes the averaged vertical pixel position of
corresponding left and right observations. K and b represent
the calibration matrix and the stereo camera baseline. Note
that in fi(6p,0s; My n, My n, My, K, b) the parameters 6,, and
6 are variable nodes, whereas m; p, m, , m,, K and b are
fixed (measured) values.

Using a Gaussian measurement model translates the deter-
mination of the optimal values for the variable nodes 6; into



(a) Left Input Frame.

(b) Left Object Segmentation.

(c) Left Background Segmentation.
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(f) Trajectory Reconstruction (Top View).

(g) Trajectory Reconstruction (Side View).

Fig. 4: Vehicle trajectory reconstruction using three sequences (stuttgartO1-stuttgartO3) contained in the Cityscape dataset
[36] and one sequence (2011_09_26_drive_0013) of the KITTI dataset [37]. Object segmentations and object reconstructions
are shown for one of the vehicles visible in the scene. The reconstructed cameras are shown in red. The vehicle trajectories
are colored in green and blue. The figure is best viewed in color.



Fig. 5: Anaglyph images representing stereo information of the sequences contained in the presented virtual vehicle trajectory
dataset. Information of left and right images are highlighted with green and red, respectively.

the nonlinear least-squares problem shown in (@).

argénin(— log f(@)) = argglinZHhk(@k) - ZkHQZk S
k

Here, ||H22k denotes the squared Mahalanobis distance with
covariance matrix » .. hi(©y) and z;, denote the mea-
surement function and measurement corresponding to the
stereo factor fj. For more details see [38]]. To determine
the maximum a posteriori estimate, we apply the Levenberg-
Marquardt algorithm to (@), which solves the nonlinear least-
squares problem iteratively. We initialize the stereo camera
variable nodes 6, with the pose of the left cameras [R'”[t”)]
with t; = —RZ(-O)CZ' and the landmark variables nodes 8, with
the triangulated points ogo). The resulting reconstructions
show consistent camera stereo baselines. Fig. [7] shows a
comparison of initial and refined reconstructions.

We determine for all 3D object points in the stereo-refined
reconstruction result an objectness score by projecting each
point onto the tracked object segmentation for all cameras.
This allows us to remove outliers using the semantic outlier
filtering presented in [23].

Monocular projection factors in combination with odometry
factors between left and right cameras provide an alternative
to stereo projection factors. However, this increases the
amount of variable and factor nodes, which results in a higher
computation time.

D. Stereo Matching Baselines

We use the object trajectory reconstruction method pro-
posed in [24]] as baseline for our experiments. This approach
combines stereo matching based object point triangulations
and camera poses obtained by the environment SfM recon-
struction. Stereo matching [23], [26] exploits knowledge of
the stereo camera setup to determine correspondences, i.e.
matches are determined along scan lines. This allows to
compute pixelwise disparity functions d;(-) for each time
step 7. With the object tracking approach described in section
we determine object specific pixel disparities d;(u, v),
where (u,v) denotes a pixel corresponding to the object in
the left image at time ¢. For each time step ¢ we back-
project the pixel disparity triplets (u,v,d;(u,v)) according
to equation (3)) to determine the corresponding homogeneous
points (y, Vy, 2, Wy, ;)

Ty, 1 O O —Cy U
Yo _ 0 1 0 —Cy ) v
Wy, v,i 0 0 =1 Cu—Cy 1

b b

Here, f and (c,,c,) denote the focal length and principal
point in pixels. b is the baseline of the stereo camera in
the background SfM coordinate frame system. Normalizing
(Tw, Y, 2, Wy v,i)T yields the actual three-dimensional object
point pjl in camera coordinates. To compute the full object
trajectory we transform the object point cloud for ea%h time
step ¢ into world coordinates with p§b2 = cl(-b) + Rgb) -py).
In contrast to the trajectory reconstruction method proposed
in section this approach does not leverage information
of subsequent frames to triangulate object points.

III. DATASET

In order to perform a quantitative evaluation of recon-
structed object motion trajectories we require accurate object
shape models as well as synchronized object and camera
poses at each time step. The registration and synchronization
of object and camera poses is a complex process and the
corresponding results contain noise and artifacts like drift.
circumvents these problems using a virtual dataset for
monocular vehicle trajectory evaluation. By extending the
presented Blender framework we render stereo sequences
and create corresponding stereo camera ground truth poses.
Fig. [5| shows a few anaglyph images representing rendered
images corresponding to the same stereo camera. We set the
baseline to 0.3 meter, which lies between the stereo baselines
used in common real word datasets [37], [36]. Overall the
dataset contains 35 sequences of five different vehicles on
seven motion trajectories.

IV. EXPERIMENTS AND EVALUATION

Our object trajectory reconstruction pipeline uses [10] and
[12] for object segmentation and optical flow computations.
We leverage [6] for object and [3] for background recon-
structions. For all SfM reconstructions, we applied a camera
model with fixed focal length, principal point and no radial
distortion. We use the stereo matching approach proposed
by [26] with the object trajectory reconstruction method
presented in [24] as baseline. The current implementation
of our pipeline does not meet real time requirements.

A. Qualitative Evaluation

Due to the lack of suitable ground truth data we show
qualitative trajectory reconstruction results using publicly
available datasets of driving sequences presented in [36] and
[37]. Fig. A shows intermediate and final results produced by
the proposed method. Fig. |7| shows a comparison of object
SfMs result before and after refinement using factor graphs.
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(a) Initial object StM result. (b) Refined object SfM re-

sult.

Fig. 7: Comparison of initial SfM object reconstructions and
corresponding refinements using stereo constraints. The cam-
eras are shown in red. The blue and green circle emphasizes
incorrectly registered cameras and triangulated points.

The refinement using factors graphs improves the consistency
of camera poses and triangulated object points. According
to the Fresnel equations [39] the reflection intensity depends
on the angle between camera and object surface. Since our
method uses temporal adjacent views to triangulate object
points it is less prone to reflection based point correspon-
dences. Fig. [ shows a comparison of the proposed method
and the baseline.

B. Quantitative Evaluation

Due to the lack of suitable real world benchmark datasets
for vehicle trajectory reconstruction using stereo data, we
extended the monocular rendering framework presented in
[22]. We apply the monocular trajectory error defined in [22]
for binocular sequences by back-projecting the reconstructed

(a) Stereo Matching Base-
line.

(b) Proposed Method.

Fig. 8: Trajectory reconstruction examples using sequences
of the CityScapes dataset. The red circles emphasize incor-
rectly triangulated trajectory points.

Average Trajectory Error (meter)
Method | Lancer Lincoln Smart Van  Golf | Overall
Ours 0.05 0.13 0.06 0.09 0.13 0.09
Baseline 0.06 0.06 0.07 0.10 0.27 0.11
23] 0.11 0.09 0.14 021  0.30 0.17
22] 0.20 0.23 0.33 0.33 047 0.31

TABLE I: Trajectory error per vehicle of the presented
benchmark dataset. Our approach achieves an average tra-
jectory error of 0.09 m considering all sequences and out-
performs the monocular methods presented in [22] and [23]].

object point cloud using only left cameras. The trajectory
error is the average trajectory-point-mesh distance, i.e. the
shortest distance of each object point to the vehicle mesh at
the corresponding time step. The trajectory error is affected
by background camera poses registration errors and incorrect
vehicle point triangulations. Table [[] compares our method
with two monocular reconstruction methods and the baseline
described in section



V. CONCLUSIONS

This paper presents a novel approach to reconstruct three-
dimensional object motion trajectories using stereo image
sequences. Our method tracks objects on pixel level across
the input videos. This allows us to use SfM to reconstruct
different objects simultaneously. In contrast to previously
published stereo 3D object trajectory reconstruction methods,
our approach leverages temporal adjacent frames for object
and background reconstruction. Thus, the presented method
circumvents stereo camera baseline limitations. The usage
of temporal adjacent views for point triangulation reduces
for example the number of outliers caused by reflections.
We observe that a refinement of SfM reconstructions using
stereo camera projection constraints improves the accuracy
of camera poses and reduces the number of incorrectly trian-
gulated object points. Our approach builds an object model
and registers camera poses w.r.t. this object model, which is
not possible with previously presented stereo matching based
reconstruction pipelines. We showed qualitative results on the
Cityscape and the KITTI dataset due to the lack of real world
stereo 3D object motion trajectory benchmark datasets with
suitable ground truth data. We created a set of virtual stereo
sequences and corresponding ground truth data to evaluate
our method quantitatively. The dataset is publicly available
on our website. In future work we will analyze robustness
of the presented approach w.r.t decreasing object sizes.
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