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Abstract

We present a vision based method to estimate the res-
piration rate of subjects from their chest movements. In
contrast to alternative approaches, our method is fully
automated, non-invasive, robust to occlusions, and only
depends on off-the-shelf hardware. We project a fixed
infrared (IR) dot pattern. The dots are detected using a
camera with a matching IR filter. We estimate the dots’
barycenters with sub-pixel precision and we track them
over a 30 seconds sliding window. We merge all trajec-
tories using Principal Component Analysis(PCA) and
use Autoregressive (AR) Spectral Analysis to estimate
the respiratory rate. The system was evaluated on 9
subjects and on a range of simulated scenarios using
an artificial chest.

1. Introduction and related work

Alterations of the respiratory rate (RR) are important
markers of serious illness, and therefore RR is one of
the main vital signs measured when performing clinical
evaluations. Usually RR is measured by nursing staff
by counting the number of chest excursions during a
period of 30 seconds. A spirometer is used in cases
where continuous monitoring is preferred. It directly
measures airflow with a sensor, which can be a nasal
cannulae, a mouthpiece, or a facemask.

Although these methods are convenient in hospi-
tal wards, for domestic or long term RR monitoring
non-contact methods are preferred. There is a partic-
ular interest in RR monitoring during sleep, e.g. el-
derly care [2], prediction of risk events [1], and new-
born monitoring [6, 12]. This problem has been studied
from multiple fields but a practical system is still miss-
ing (see [1,7]).

A general domestic monitoring system must be ro-
bust, autonomous, able to work without the collabora-
tion of the monitored subject, easily installable on any

Figure 1. RR estimation on a 30s window,
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domestic environment, and last but not least economic.
Price rules out approaches that measure temperature
changes associated to the breathing cycle [1, 6, 16] as
they require thermal cameras. Skin color based meth-
ods [9, 14] estimate blood oxygen saturation to get the
heart and breathing rates, but they can not work in the
dark.

Several methods measure chest and abdominal
movements, which has the advantage of being robust to
occlusion. Doppler effect measurement has been stud-
ied using radar [5] and laser [12]. Computer Vision
systems have found however limited success [8, 15].
But recent research using RGB-D, sensors such as Mi-
crosoft Kinect and ASUS Wavi Xtion, is promising [4].

The main limitation of those systems is the small
movement typically evoked by respiration, which is
around 10mm [13]. To overcome this limitation, pas-
sive systems require the subject to wear as much texture
as possible [15], and stereoscopical systems use large
baselines [2] or just close detection distances [4].



Our approach builds on the ideas brought by these
systems. We use a Kinect which has been modified to
project big IR dots. Each dot is tracked over 30 seconds
and all trajectories are fused together using Principal
Components Analysis. Finally, we perform an Autore-
gressive Spectral Analysis to obtain RR. Our method is
designed to maximize the information extracted from
the source images while still being a realtime approach.
This allows us to estimate very small movements such
as the ones induced by a sleeping person from a distance
of 3 meters (see Fig. 1), where the mean amplitude of
the movement is less than 0.048 pixels, or 0.0022 de-
grees.

We evaluated our breath rate estimator on 9 healthy
subjects and compared our results with those of an in-
ductance plethysmograph (RR measuring belt). Using
an artificial system that simulates chest movements, we
evaluated the distance and frequency limits of our sys-
tem and compared them to those of an state-of-the-art
alternative [4].

2. Estimating respiratory rate
2.1. Image sensor and camera model

Our system requires an IR dot pattern projector and
a camera with a matching IR filter. For convenience we
use a modified Kinect as it includes both devices.

The main goal of modifying Kinect was to improve
the individual detection of the dots projected by the IR
laser. We configured the IR camera to 1280x1024 pixels
at 9.1 frames per second, and added a Niko Zoom lens
only to the IR projector to increase the size of the dots.
We detect an average of 15000 dots in the camera view.

Several parameters that must be taken into account in
order to design the system. From the camera’s point of
view, when an object in the scene moves, the dots that
are projected on it are displaced along the epipolar line.
Using the pinhole camera model and the standard model
for parallel cameras, the epipolar lines are y = const,
and therefore the dots move only along the horizontal
dimension.

The displacement magnitude depends on the focal
length of the camera f; distance between camera and
projector, or baseline b; magnitude of the object dis-
placement d; distance to the object z; and angle of the
displacement respect the angle of the camera o. Then
Ax is the observed horizontal displacement of a dot in
the image plane in pixels:
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We approximate f by using the rectilinear lens
model from the horizontal resolution r and the angular
field of view [3:
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Consequently, the pixel displacement can be im-
proved by using a better resolution, larger baseline [2],
smaller field of view or smaller distance to the ob-
ject [4].

The Kinect camera has 5 = 57.8° and b = 75mm.
With the Kinect tilted 30° from the horizontal and point-
ing towards a person sleeping in supine position, a
10mm breathing amplitude translates to 1.74 pixels at
.5 meters, 0.435 pixels at 1 meter, 0.109 pixels at 2 me-
ters, and 0.027 pixels at 4 meters.

2.2. Estimating dot trajectories

We create tracks for every dot containing its trajec-
tory over the last 30 seconds. First we highlight the dots
on the current image by convoluting it with a 2D LoG
kernel of matching size, in our case 9x9 pixels. We then
find the local maximum for each dot with sub-pixel pre-
cision by computing the Center of Gravity [3] over a
5x5 pixel window. The tracking is performed frame by
frame using a 3x3 pixel search window.

2.3. Feature Fusion using PCA

Image based algorithms usually produce a high num-
ber of features, often one per pixel, therefore complex
fusion algorithms are commonly avoided and features
are simply averaged (e.g., [2,4, 8, 14, 15]). In our case,
we use the dot trajectories as features, and we only take
into account dots with a complete 30s record. This re-
duces the typical amount of features to thousands in-
stead of millions, and allows us to fuse the dots with a
more elaborate method.

We experimentally found that the two major noise
sources in our system are thermal noise, and mechani-
cal vibration. The first noise shows no correlation be-
tween dots, but the second displays a strong correlation



between them. However, both types of noise are uncor-
related to the RR signal. In this scenario we can use
Principal Component Analysis (PCA) to separate the
signal component from the mechanical vibration, while
reducing the level of thermal noise at the same time.

The principal components are calculated from a ma-
trix containing the trajectories of each dot. We only
need to calculate the first few components as we expect
the RR signal and the correlated noise to be represented
in the bases with most variance, and the thermal noise
to be distributed between the remaining ones. We use
the iterative EM [10] algorithm to efficiently calculate
the 16 strongest components.

Then we discard noisy bases by using the Durbin-
Watson test, as has been suggested by Ryu et al. [11]:
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dpw lies between 0 and 4, and small values indicate a
positive autocorrelation. All bases with dpy above av-
erage are discarded. Then we obtain the Power Spectral
Density (PSD) of the remaining bases using FFT, and
discard the bases whose average power in the interest
region (from 3 to 60 breaths per minute) is less than the
average power outside the interest region.

Using the remaining bases we calculate an average
trajectory with less noise, see Fig. 1.

2.4. Estimating RR from AR Spectral Analysis

Model based methods such as Autoregressive (AR)
Spectral Analysis are often used in hearth and breath
rate monitoring (e.g. [14]). An AR model can be seen
as an Infinite Impulse Response filter that outputs an
estimation of the data when it is excited by white noise.
A pth order AR model is defined by:

P
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Once we estimate ¢y, using Burg’s maximum en-
tropy method, we get the PSD of the process with:
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Where o2 is the noise variance. The PSD obtained
from the AR model presents narrower maxima than the
PSD obtained from FFT, see Fig. 1. p id usually chosen
empirically for each task, as higher order AR models
contain more information and offer more precision, but
are prone to split the main peak in two or more smaller
peaks. We chose p = 80 based in our preliminary ex-
periments.
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The breathing rate is determined by scanning the
PSD for local maximums inside the interest region. The
frequency of each detected maximum is refined using
the bisection method the strongest one is chosen.

3. Evaluation

3.1. Comparison to a plethysmograph

Our system was used to measure the breathing rate
of 9 healthy subjects. They were asked to rest in our
test bed, and then we monitored their breathing for two
minutes from a distance of 1.5 meters to the chest and
an angle of 45°.

As the respiratory rate is a weakly defined measure,
e.g.neither the minimum airflow nor the length of the
measuring window are clearly regulated, we compared
the results with those of an inductance plethysmograph:
a MedTex180 based RR measuring belt. We obtained a
correlation value of 0.995, and the null hypothesis of no
correlation can be rejected with a p-value of 2.9178,

3.2. Range of operation

Using an artificial chest, we evaluated the range of
operation of our system and compared it to that of an
state-of-the-art alternative [4].

The artificial chest presents a surface of 30x20cm
that simulates a respiration induced movement with the
inhalation, exalation and pause periods with a move-
ment amplitude of 10mm. In all tests it was covered by
a white textureless bed sheet.

We chose Burba et al. [4], as a baseline system
because it uses the same sensing device. Inhalation
and exhalation periods are labeled by analyzing depth-
averages over a 12 frame sliding window, then the
elapsed time between consecutive breaths is used to es-
timate RR.

Range depends on the sensitivity of the system. We
measured the capacity of each algorithm to discern the
correct breath frequency over its harmonics and the
background noise. We tested several RR and z com-
binations, 20 times per bin. A test was deemed success-
ful when the algorithm provided an estimation within
+10% of the generated RR, and a failure otherwise.
Success rate can be seen in Table 1. For our system we
set up a Kinect 1m over the bed and aimed to the arti-
ficial chest. However, the Kinect was lowered to 50cm
for our baseline system as we found necessary to test
smaller z values.



ours || 200 cm | 300 cm | 400 cm | 500 cm

4bpm || 70 30 40 40
57bpm || 100 90 90 35
81bpm || 90 90 100 0

11.6bpm | 95 100 55 5
16.6 bpm | 100 80 50 0
238bpm | 95 60 55 0
342bpm || 100 80 25 0
492bpm | 95 35 30 5

baseline || 70 cm | 85cm | 100 cm | 115cm

4 bpm 0 0 0 0
5.7 bpm 0 50 10 0
8.1 bpm 25 85 45 5

11.6 bpm 65 60 05 0
16.6 bpm 45 25 10 0
23.8 bpm 20 15 10 0
34.2 bpm 5 15 0 0
49.2 bpm 0 10 15 0

Table 1. RR estimation success rate: Breaths Per Minute and Distance to the sensor (in %)

4. Conclusions and Future Work

We presented a vision based method to estimate the
respiratory rate of sleeping subjects. Our system uses
a modified Kinect to project dots and with its IR cam-
era tracks the dots over 30 seconds. Trajectories are
then filtered using a PCA based method and the respira-
tory rate is estimated using autoregresive spectral anal-
ysis. As our approach is non-invasive, autonomous, and
depends only on affordable hardware, it facilitates the
monitoring of patients in their own homes.

We have shown how to adapt this system to a custom
environment, and we evaluated our test system in real as
well as in simulated scenarios. Our results show that our
approach provides good accuracy over a wider range of
operating conditions than a similar approach using the
same hardware.

However, our algorithm is only reliable when the
subject is resting, and it can easily be fooled by sleep
movements. Our next goal is to address this problem,
common to all approaches that depend on chest move-
ments.

Furthermore we want to extend our system by recog-
nizing anomalous breathing patterns such as Cheyne-
Stokes respiration or apnea, which can be simulated
using our artificial chest. And we are also working
on recognizing automatically multiple persons such as,
e.g.couples.
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