
A Closed-form Gradient for the 1D Earth
Mover’s Distance for Spectral Deep Learning

on Biological Data

Manuel Martinez, Makarand Tapaswi, and Rainer Stiefelhagen
Karlsruhe Institute of Technology, Karlsruhe, Germany

Email: firstname.lastname@kit.edu

1 Introduction

Spectral analysis is performed in several domains of physiological monitoring
(e.g. respiratory analysis [1], EEG [2], ECG [3]). Regression models in the
spectral domain enable several applications, often through the use of Power
Spectral Density (PSD). Within machine learning frameworks, PSD is com-
monly treated as a probability distribution and learned using the Küllback-
Leibler (KL) divergence. However, KL compares each bin independently.

The Earth Mover’s Distance (EMD) is a natural metric to compare distri-
butions, but has seen limited use due to its computational cost. Nevertheless,
for one dimensional distributions (e.g. PSD) the EMD can be computed effi-
ciently, and we derive a closed-form solution for its gradient. We enforce the
gradient to preserve the `1 norm of the original distribution. We evaluate
on a data set of 81 sleep laboratory patients, predict breathing rate, and
compare EMD as a loss against KL divergence and Mean Squared Error.

2 The Earth Mover’s Distance

The Earth Mover’s Distance, also known as the Wasserstein distance, is a
family of metrics used to compare distributions based on the optimal trans-
port problem. The name EMD is derived from the effort required to move
dirt to make the distributions equal. In the typical case, the two distributions
are non-negative and are of the same size (same total amount of dirt).

The EMD metric has seen significant use to compare histograms [4, 5, 6, 7]
or even entire images [8]. Recently there have been efforts to integrate EMD
as a loss criterion for deep learning [9, 10]. However, as compared to other
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criteria such as Mean Squared Error (MSE) or KL divergence, the perceived
inefficiency in EMD computation has hindered progress.

In the general case, calculating the EMD requires to solve the optimal
transport problem that turns the source distribution to the target one. As
this calculation is expensive, much effort has been invested in relaxed defini-
tions of the EMD that allow more efficient computation [11, 12, 13, 14, 15].

Recently, Frogner et al. [10] suggest a method to incorporate EMD in
a deep learning framework using the entropic regularization proposed by
Cuturi [14]. We consider that this approach to compute EMD is unnecessarily
complex for the common case of one dimensional distributions for which there
exists a closed-form solution.

For two discrete distributions, represented as non-negative vectors a and
b of length N , the one-dimensional EMD is defined as:

EMD(a,b) =
N∑
i=1

|ϕi|, where ϕi =
i∑

j=1

(
aj
‖a‖1

− bj
‖b‖1

)
. (1)

This is rewritten using the sign function as EMD(a,b) =
∑N

i=1 sgn(ϕi) · ϕi.

2.1 Gradient of Earth Mover’s Distance

To integrate EMD with deep learning, we now compute the analytical form
of its gradient.

Let ek be a unit vector of length N whose value at dimension k is 1, and
0 elsewhere. For a small perturbation h, we compute the distance between
the modified distribution a + hek and b as:

EMD(a + hek,b) '
N∑
i=1

sgn(ϕi)

i∑
j=1

(
aj + hδjk
‖a‖1 + h

− bj
‖b‖1

)
, (2)

where δjk = 1 when j = k. Note that by choosing h small enough, sgn(ϕi) is
unchanged.

We now compute the partial derivative for EMD as follows. As we define
EMD on normalized vectors (Eq. 1), without the loss of generality, we assume
‖a‖1 = ‖b‖1 = 1, and operate on unit `1 norm vectors â and b̂.
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gEMD =
∂EMD(â, b̂)

∂ak
= lim

h→0

1

h

(
EMD(â + hek, b̂)− EMD(â, b̂)

)
(3)

' lim
h→0

1

h

N∑
i=1

sgn(ϕi)

(
i∑

j=1

(
âj + hδjk

1 + h
− b̂j

)
−

i∑
j=1

(
âj − b̂j

))

= lim
h→0

1

h

N∑
i=1

sgn(ϕi)
i∑

j=1

hδjk − hâj
1 + h

=
N∑
i=1

sgn(ϕi)
i∑

j=1

(δjk − âj) . (4)

2.2 `1 preserving gradient

The above gradient disobeys the law of dirt conservation and creates new or
destroys existing dirt, rendering it unsuitable for use (i.e. the gradient sum
is not 0). To solve this problem, and in contrast to ek, we redefine our unit
vector such that its sum is 0. We propose a set of vectors ẽ ∈ {−1, N − 1}N ,
where ẽk takes the value N − 1 at dimension k, and −1 elsewhere.

The partial derivatives for such a setting are

gEMDL1 =
∂EMD(â, b̂)

∂ak
= lim

h→0

1

h

(
EMD(â + hẽk, b̂)− EMD(â, b̂)

)
(5)

' lim
h→0

1

h

N∑
i=1

sgn(ϕi)

(
i∑

j=1

(
âj + h(Nδjk − 1)− b̂j

)
−

i∑
j=1

(
âj − b̂j

))

= lim
h→0

1

h

N∑
i=1

sgn(ϕi)
i∑

j=1

h (Nδjk − 1)

=
N∑
i=1

sgn(ϕi)
i∑

j=1

(Nδjk − 1) . (6)

2.3 Implementation details

Efficiency. We implement our regression model with the EMD criterion
using Torch [16]. Note that ϕi can be computed very fast through the use of
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Figure 1: We train a regressor to estimate the PSD of the breathing signal. The
validation error is the distance between the largest PSD peak (predicted vs. ref-
erence) in Breaths Per Minute (BPM). Left: the gEMDL1 (`1 preserving variant
of EMD) converges faster than all other losses: gEMD, MSE and KL divergence.
Right: the sum of gradient gEMDL1 is 0, while it fluctuates for gEMD.

a cumulative sum operator (cumsum). On a GPU, both forward and backward
passes of EMD are faster than KL divergence (tested for N = 30).

Absolute magnitude. The original EMD is not defined for ‖a‖1 6= ‖b‖1.
Although there are several ways to modify the EMD for unnormalized dis-
tributions [13, 17] we consider that this goes against the spirit of the metric.
Therefore, prior to computing the EMD, we `1-normalize the input distribu-
tions (see Eq. (1)). Such a normalization can lead to a mismatch between the
absolute magnitudes, which may result in numerical instability during opti-
mization. We address this by defining our loss as the weighted combination
of EMD and MSE criterion (wEMD = 0.9, wMSE = 0.1).

Non-negative distributions. We square the output of the last layer of our
model to ensure non-negative values for the distribution.

3 Experimental results

We train a two layer Multilayer Perceptron regressor to predict the breathing
signal PSD from the chest excursion of 81 sleep laboratory patients with
different degrees of apnoea, and use the PSD from a nose thermistor as
reference. As we see in Fig. 1, the PSD obtained using gEMDL1 loss converges
faster and provides a better estimation of the breathing rate (the largest peak
of the PSD). We also see that the gradient sums to 0 for gEMDL1.
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