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Abstract

We present Marlin, a variable-to-fixed (VF) codec optimized for decoding speed. Marlin
builds upon a novel way of constructing VF dictionaries that maximizes efficiency for a given
dictionary size. On a lossless image coding experiment, Marlin achieves a compression ratio
of 1.94 at 2494MiB/s. Marlin is as fast as state-of-the-art high-throughput codecs (e.g.,
Snappy, 1.24 at 2643MiB/s), and its compression ratio is close to the best entropy codecs
(e.g., FiniteStateEntropy, 2.06 at 523MiB/s). Therefore, Marlin enables efficient and high-
throughput encoding for memoryless sources, which was not possible until now.

Introduction

The goal of High Throughput (HT) compression is not to reduce storage requirements,
but to improve transmission or communication performance to better leverage the
available bandwidth. In this scenario, the maximum effective throughput is achieved
balancing compression ratio and coding/decoding speed. A number of algorithms
exploit different sweet spots, depending on the required application.

All current HT algorithms use LZ77 [1] derived algorithms, where encoding is
very efficient due to the use of hash tables [2, 3], and decoding requires only memory
copies, e.g., Snappy [4], LZ4 [5], or LZO [6]. The entropy stage is either dropped,
e.g., Snappy, LZ4, or greatly simplified, e.g., LZO, Gipfeli [7], since adaptive entropy
codes like Huffman [8] and arithmetic [9]/range encoding [10] are generally slow,
despite of the current efforts to make them faster, e.g., Huff0 [11] for Huffman and
FiniteStateEntropy [12, 13] for range encoding.

Dropping or simplifying the entropy coding stage is a reasonable trade-off for text
based sources, but has a steep penalty mainly when compressing memoryless sources
like noisy sensor data, e.g., raw images [14, 15, 16]. To enable HT compression in such
cases, we present Marlin, an entropy codec that can be decoded as fast as Snappy
and LZO. Marlin follows a variable-to-fixed (VF) coding approach.

Variable-to-fixed codes are similar in essence to LZ77 and can be decoded equally
fast. In VF coding, a memoryless digital source is described as a sequence of variable
sized words from a given dictionary. The code emitted consists of the indexes that
point to such words. The dictionaries are generally built to be uniquely parsable,
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Figure 1: Marlin encodes blocks of 4096 bytes. A dictionary set is known to both
encoder and decoder. The encoder inspects the block, selects the best dictionary,
compresses the block, and emits the compressed blob and the index of the dictionary.
The decoder recovers the original block using the selected dictionary.

which requires that no word is a prefix of any other word in the dictionary. Such
dictionaries can be build using Tunstall [17] algorithm, but they tend to be large.

Plurally –i.e., not uniquely– parsable dictionaries [18] have been shown to out-
perform Tunstall dictionaries of equal size [19, 20, 21]. We suggest a novel way of
constructing plurally parsable dictionaries for arbitrary alphabets using a constrained
Markov process of only 255 states (for 8-bit sources). To optimize the dictionary to an
input source, we apply an iterative algorithm with two steps: the first step calculates
the Markov process for a given dictionary, the second step creates an optimized dic-
tionary for a given Markov process. Our algorithm alternates between the two steps.
Our proposed HT encoding/decoding technique, Marlin1, builds upon this dictionary
to implement an algorithm that is extremely fast to decode.

In order to assess the coding performance of Marlin, we evaluate it for synthetic
distributions, achieving better compression efficiency than Tunstall over all entropy
levels when limited to 212 entries. We also evaluate Marlin for lossless image compres-
sion on the well known Rawzor benchmark [22]. Marlin achieves a compression ratio
of 1.94 at 2494 MB/s, while Tunstall only achieves 1.34 at 1815 MB/s. The reference
algorithm for fast lossless image compression, JPEG-LS [15], achieves a compression
ratio of 47.23% and a mean decoding speed of 30.6 MB/s.

Proposed Encoding/Decoding Technique

High throughput codes are rarely used to compress files, therefore Marlin, like LZ4 [5],
Snappy [4], Huff0 [11] and FSE [12], do not define a file format. Marlin is designed
to compress data blocks of a fixed size (see Fig. 1). Each block is encoded using
a dictionary chosen from a known set of dictionaries. This set should cover all ex-
pected probability distributions that the source may present. The encoder generates
a compressed data blob, and provides the index of the dictionary used to compress
the block. The decoder, which knows the same dictionaries used for compression, re-

1We choose the name for the Black Marlin, the fastest fish known to man. Like fish, which are
not known for having great memory, our algorithm does not remember the state of the input.



ceives the compressed data blob and the dictionary index, and generates the original
uncompressed data.

Implementation Details

Block size. Small block sizes provide better compression efficiency, but large blocks
improve decompression performance. We fix the block size to 4096 bytes, which
corresponds to the size of a memory page in x86 processors.
Dictionary set. The dictionary building process is time consuming, and the gener-
ated dictionaries are too large to be sent with the data. This makes it unfeasible to
create a custom dictionary per block (as Huff0 and FSE do). Marlin uses a fixed set
of dictionaries with common probability distributions, and selects the best fitting one
to compress each block. For efficiency reasons, the dictionary set must be small, as
switching dictionaries trashes the cache. We employ 11 dictionaries per distribution.
Alphabet size. Marlin currently supports 8-bit alphabets.
Dictionary size. Marlin dictionaries can contain between 29 and 216 entries. Larger
dictionaries provide better compression efficiency, but are slower to decode. We use
212 entries per dictionary as it fits within most L1 caches.
Special cases. Like Huff0 and FSE, Marlin implements two special cases. One for
blocks that contain only zeros, and one for blocks which can not be compressed at
all. Both cases are indicated by magic values in the dictionary index.

Encoding

The first step of the encoding process is to select a dictionary to encode the current
block. A naive way to find the most efficient dictionary is to encode the block with
all available dictionaries, and choose the one that generates the smaller blob, but this
is very inefficient. Instead, we use the block entropy to select which dictionary to use.

Given a dictionary, the encoder needs to find the largest word in the dictionary
that matches the input source. We have implemented this task efficiently using a
trie (i.e., also known as prefix tree). The performance is bound by memory latency,
therefore using smaller dictionaries boost encoding speed, this happens because a
larger proportion of the trie fits within the cache, increasing the hit ratio.

Decoding

The decoder receives a compressed blob representing a single data block, and the
index of the dictionary used to compress it.

For each dictionary, the decoder prepares a table structure that contains a word
per entry (see Fig. 2 (b) ). Each entry from the table has the same length, which is
a power of two. The word is at the beginning of the entry, and the word length is
placed on the last byte.

The decoder loop does:
1. extract a word index from the input stream,
2. fetch the corresponding entry from the decoding table,
3. copy the entire entry to the output stream,
4. increase the output pointer accordingly.
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a ∗ ∗ 1 (000)
a a ∗ 2 (001)
a b ∗ 2 (010)
b ∗ ∗ 1 (011)
b a ∗ 2 (100)
b b ∗ 2 (101)
c ∗ ∗ 1 (110)
d ∗ ∗ 1 (111)

(b)

Decoding 001011110:
a a ∗ 2 ∗ ∗ ∗ · · ·

Decoding 001011110:
a a b ∗ ∗ 1 ∗ · · ·

Decoding 001011110:
a a b c ∗ ∗ 1 · · ·

(c)

Figure 2: Decoding example where aabc is coded with the dictionary (a) to generate
001-011-110. The decoder generates the table (b) from (a), storing the word length
in the last byte. The decoding process (c) involves copying the whole entry to the
output stream, but advance the pointer only the actual word length.

We analyze now in deeper detail the decoding process. In the first step we extract a
word index from the input stream, as we are coding 8-bit streams, our dictionary needs
to have more than 28 entries to achieve any compression at all. Actually, the larger
the dictionary is, the better compression will be achieved, but we found empirically
that there is little to gain for dictionaries larger than 216 entries. Constraining the
dictionary sizes to power of two values ensures that we can extract indexes from
the input stream using only bit mangling operations. In our experiments we select
212-sized dictionaries since extracting 2 indexes from 3 bytes is efficient.

For each index, we fetch its corresponding entry from the decoding table. The
whole entry is fetched from memory, even if the actual word is smaller than the
maximum entry size. To avoid a performance penalty, we ensure that the table
entries are aligned to the size of a cache line (64 bytes usually).

Next, we leverage the recently added ability of current processors of performing
unaligned writes with almost no penalty, by copying the entire entry to the output
stream. Again, copying the whole entry instead of only the relevant symbols of the
word is performed to avoid checks. Finally, we increase the output pointer by the
value stored in the last byte of the entry.

This algorithm has two key advantages. First, it has a deterministic input pipeline
allowing parallel memory fetches; secondly, both word and word length are retrieved
from a single memory fetch.

Dictionary generation

We define A = {a1, a2, · · · , aN} as an alphabet of input symbols sorted in order of
non-increasing probability (i.e., P (an) ≥ P (an+1), ∀n). We generate a dictionary W
in the form of a tree where each node corresponds to an input symbol.

We build W as follows: First, we initialize the tree with a leaf for each input
symbol. Then, while |W| is smaller than desired, we add a single child to the most
probable node. The new node will contain the symbol ai+1 where i is the current
number of leaves of the parent node. As a special case, if a node has only one
remaining leaf to grow, this leaf is grown automatically. See Fig. 3 for an example.



Calculating word probabilities for a given Markov process

As we generate plurally parsable dictionaries, the compression process is not steady
and we model it as a Markov process with N − 1 possible states S = s1, s2, · · · , sN−1.
On si, words can not start with symbols with an index smaller than i.

We define the probability of the word w given that we are in state si as:

P (w|si) =
P (w1)

ΣN
n=iP (an)

·

|w|∏

n=2

P (wn) ·
N∑

n=1+c(w)

P (an), (1)

where wn is the n′th symbol of w, and c(w) is the number of children of the last node
of w. Thus the non conditioned probability of w is:

P (w) =
N−1∑

i

P (si) · P (w|si), (2)

where P (si) is the steady probability of being in state si. Therefore, we need to know
the steady probabilities of the Markov process to calculate word probabilities.

Calculating the steady state probabilities of a Markov process for a given dictionary

We calculate the transition probability Tij from state si to sj as:

Tij =
∑

w∈Wj

P (w|si), (3)

where Wj is the set of words that end at state sj.
As T represents a Markov process, the steady probabilities of being in each state

P (si) correspond to the first row of T n when n tends to ∞ (we must note that T n

converges after only a few iterations).

Building the dictionary

We initialize the dictionary building process with a trivial Markov process correspond-
ing to a unique parsable dictionary (see Fig. 3.a). Then we build a full dictionary as
previously stated (Fig. 3.e). We use this dictionary to estimate a new Markov process
(Fig. 4.a), and build a new dictionary (Fig. 4.e).

This process is repeated until convergence (Fig. 5.b), which we found empirically
to happen in a few iterations.

Then, the average bit rate of the dictionary in bits is:

ABR(W) =
log2(|W|)∑

w∈W

P (w) · |w|
, (4)
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Figure 3: A = {a, b, c, d} with probabilities {40%, 40%, 10%, 10%}, (a) naive initial-
ization of the process probabilities, (b) tree initialization, (c)-(e) growing steps.
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Figure 4: Second stage of the dictionary creation. (a) process steady probabilities are
estimated from Fig. 3.e. (b)-(e) the tree is grown again.
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Figure 5: Third stage of the dictionary creation. (a) process steady probabilities
estimated from Fig. 4.e. (b) the resulting tree is identical to Fig. 4.e, and no more
iterations are needed. (c) the equivalent Tunstall dictionary, which is less efficient.



Evaluation

To evaluate the performance of Marlin, both in terms of compression ratio and en-
coding/decoding speed, we compare Marlin to the following algorithms:
Tunstall [17]: we use Marlin code with Tunstall dictionaries.
Rice [23]: our implementation of Rice-Golomb codes (using the Rice subset) which

is a popular entropy codec for Laplace and Exponential distributions [24].
Nibble [25]: used by Kinect and the fastest entropy encoder we are aware of. Values

in [−7, 7] are encoded in a nibble (4-bit word), larger values are emitted raw.
Snappy [4]: Google’s high throughput codec based on LZ77 without entropy stage.
LZO [6]: first high throughput algorithm that saw widespread use. It is used in the

linux kernel and the btrfs file system. We evaluate the Lzo1-15 variety.
LZ4 [5]: state-of-the-art high throughput algorithm developed by Yann Collet. Its

current implementation is faster than Snappy due to improved hashing [26].
Gipfeli [7]: algorithm developed from Snappy that adds a simple entropy stage.
FiniteStateEntropy [12]: state-of-the-art implementation by Yann Collet of Jarek

Duda’s Asymmetric Numerical Systems theory [13]. It is related to range en-
coding, but requires only one value to keep the state, making it faster.

Zstandard [27]: a compression algorithm developed by Yann Collet that builds
upon LZ4 and FiniteStateEntropy. We evaluate its fastest setting.

Gzip [28]: is often used as the reference to evaluate high throughout algorithms. It
uses the deflate algorithm (LZ77 + Huffman).

CharLS [16]: fast JPEG-LS implementation for lossless image compression.
All our implementations are coded in C++ and will be made publicly available

upon publication. Great effort has been taken to implement all algorithms as effi-
ciently as possible, however no assembly code was employed to keep the code portable.

Evaluation is performed on an i5-6600K CPU at 3.5GHz with 64GB of DDR4-2133
running Ubuntu 16.04 and GCC v5.4.0 with the -O3 flag.

Results

We evaluate the performance of Marlin on synthetic data on a circular Laplace dis-
tribution. This distribution arises often when dealing with differential data [29].

We evaluate compression efficiency, encoding and decoding speed at entropy levels
from 1% to 99%. Being a memoryless source, its compression ratio is limited by its
entropy [30], therefore the compression efficiency is the ratio between the entropy
and the average bit rate achieved: ηX = H(X)/ABR(X). Fig. 6 shows that Marlin
achieves compression efficiencies well above 80% for the entire entropy range. Only
FiniteStateEntropy and Rice are able to compress better, but are significantly slower.

We evaluate Marlin on real data using the Rawzor [22] image set where blocks of
64 × 64 pixels (4096 bytes) are processed independently. The prediction model uses
the pixel above, and we compress the residuals. Fig. 7 shows that Marlin achieves
decompression speeds in the same range as Snappy, while the compression ratio is on
the same range as Zstd and Rice, and close to FiniteStateEntropy.



10 20 30 40 50 60 70 80 90

0.1

1

10

H(%)

G
iB

/
s

Marlin

0

20

40

60

80

100

effi
ci
en

cy
(%

)

10 20 30 40 50 60 70 80 90

0.1

1

10

H(%)

G
iB

/
s

Tunstall [17]

0

20

40

60

80

100

effi
ci
en

cy
(%

)
10 20 30 40 50 60 70 80 90

0.1

1

10

H(%)

G
iB

/
s

Rice [23]

0

20

40

60

80

100

effi
ci
en

cy
(%

)

10 20 30 40 50 60 70 80 90

0.1

1

10

H(%)

G
iB

/
s

FiniteStateEntropy [12]

0

20

40

60

80

100

effi
ci
en

cy
(%

)

10 20 30 40 50 60 70 80 90

0.1

1

10

H(%)

G
iB

/
s

LZ4 [5]

0

20

40

60

80

100

effi
ci
en

cy
(%

)

10 20 30 40 50 60 70 80 90

0.1

1

10

H(%)

G
iB

/
s

Zstandard [27]

0

20

40

60

80

100

effi
ci
en

cy
(%

)

10 20 30 40 50 60 70 80 90

0.1

1

10

H(%)

G
iB

/
s

Gzip [28]

0

20

40

60

80

100

effi
ci
en

cy
(%

)

10 20 30 40 50 60 70 80 90

0.1

1

10

H(%)

G
iB

/
s

CharLS [16]

0

20

40

60

80

100

effi
ci
en

cy
(%

)

efficiency encoding decoding

Figure 6: Evaluation on synthetic memoryless Laplace sources of varying entropies.
Marlin’s compression efficiency is above 80% and its decoding speed is above 1GiB/s.
Tunstall, with equally sized dictionaries, is significantly less efficient. FiniteStateEn-
tropy and Rice compress more, but are slower. LZ4 speed is comparable, but has poor
efficiency. Note that decoding speeds above 10GiB indicates uncompressed data.
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Figure 7: Evaluation on the Rawzor image compression dataset. The current state-
of-the-art algorithm for high throughput entropy coding, FiniteStateEntropy (FSE)
achieves a compression ratio of 2.07 at 524 MiB/s. Our algorithm, Marlin, achieves
a compression ratio of 1.94 at 2494 MiB/s, which is 4.76 times faster.

Conclusions and future work

We have presented Marlin, a high-throughput compression algorithm that achieves
competitive compression efficiency for memoryless sources. Marlin builds upon a
novel variable-to-fixed code using plurally parsable dictionaries, and a very optimized
branchless decoding algorithm. As a consequence, Marlin achieves decoding speeds
above the GiB/s range. However, the current implementation is to be understood
as a proof of concept, and we expect to improve the decoding rate using processor
intrinsics and new optimization techniques. Likewise, as plurally parsable dictionaries
enable tradeoffs between compression ratio and encoding speed, we are currently
investigating the best choices.
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