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Abstract

Computer vision is a non-invasive way to super-
vise patients in the bed. We introduce a novel al-
gorithm that monitors breathing rate from a depth
camera placed above the bed. While visually regis-
tering breathing rate has raised significant interest
in the health care field, most published approaches
are evaluated only on constrained or simulated set-
tings. Conversely, we evaluate our method in a real
dataset consisting of 3,239 segments collected from
67 sleep laboratory patients. Our method intro-
duces three novel contributions: a dynamic Region
of Interest (Rol) which is aligned to the bed, a con-
fidence metric based on patient agitation, and the
Early Fourier Fusion strategy. Overall, our cam-
era based method is accurate on 85.9% of the seg-
ments. This performance is similar to the obtained
from a chest sensor (88.7%). Most importantly, we
report the performance impact related to different
sleep conditions, like apnea, position and staging.

1. Introduction

We present a novel algorithm that monitors
breathing rate continuously during sleep using a
depth camera. Our monitoring device, which re-
quires no calibration, is attached to the ceiling
above the bed (see Fig. 1), and is completely au-
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Figure 1: We monitor the breathing rate of a pa-
tient from a depth camera attached to the ceiling
(left). The device used in this experiment (right)
contains, among other sensors, a depth camera and
an infrared camera, allowing us to record at night.

tonomous, non-invasive and easy to install and use.

Registering the breathing rate from a depth cam-
era in ideal conditions is simple and has been done
multiple times. However, the main application of
this technology is to monitor elderly people who of-
ten have significant medical conditions which alter
their sleep and breathing patterns, e.g., insomnia,
and apnea. We aim to develop technology that im-
proves the quality of life of elderly people for both
nursing homes and ageing-at-home scenarios.

As our setting is far from ideal, we need to deal
with its associated challenges, namely a very large
distance between patient and camera, and the dif-
ferent sleep conditions that the patient may present.
To this end, we evaluate our algorithm on 67 pa-
tients referred to a sleep laboratory with various de-
grees of sleep apnea. To the best of our knowledge,
this is the first system that has been evaluated in



real-life conditions on apnea-prone patients.

Respiration in real-life conditions is a com-
plex signal to retrieve. Respiration is a semi-
autonomous mechanism where the muscles in-
volved are generally controlled unconsciously, but
we can also control them at will. In fact, we in-
terrupt our breathing motion often to speak, cry,
cough, or move our body. Furthermore, there are
several conditions that interrupt or alter our breath-
ing, such as apnea.

The semi-autonomous nature of breathing be-
comes a significant problem if we monitor breath-
ing rate continuously. In medical settings, there are
two main ways to register breathing rate: instant
measurements, or continuous measurements. In-
stant measurements are usually taken by a nurse,
where the patient is told not to move or talk while
the nurse counts the number of chest excursions. In
case of coughing, talking or agitation, the nurse can
simply repeat the measurement.

Conversely, continuous monitoring is a more
complex task. In sedated patients (e.g., Inten-
sive Care Units) an airflow measuring mask is
used, but to diagnose respiration conditions dur-
ing sleep, doctors perform a multi-sensor analysis
named polysomnogram.

We aim to provide continuous breathing rate
monitoring in domestic and elderly care envi-
ronments, where polysomnograms are not cost-
effective and excessively intrusive.

Our system improves over the state of the art by
using a dynamic region of interest aligned to the
bed, a novel confidence test based on agitation, and
an Early Fourier Fusion approach that allows us to
combine out-of-phase breathing signals in a con-
structive way and thus recover a strong signal from
a noisy sensor.

We evaluate our algorithm on 67 real patients
and use the polysomnogram as a reference. This
way we can measure how much different sleep con-
ditions impact our accuracy. We found out that
breathing rate can be accurately recovered from any
sleep position and sleep stage, but apnea events de-
grade our estimates significantly. Compared to a
chest band, our algorithm achieves similar quanti-
tative and qualitative results.

2. Previous work

Due to the large cost and invasiveness of the
polysomnogram, many alternative sensing methods
have been proposed like microwave radar [5], audio
radar [11], motion sensors [6], laser interferome-
try [15], and cameras [1, 2, 3, 8, 10, 12, 16, 17].

Computer vision systems are becoming popular
because they are cost effective and can be used for
more than one monitoring task, however, are af-
fected by illumination and point-of-view changes
and require more advanced signal processing than
approaches that measure chest movement directly.
To simplify the problem and obtain a more robust
solution, cameras with different modalities have
been used. Thermal cameras can visualize the tem-
perature of the exhaled air, however are expensive
and localizing the region of interest is difficult [17].
Infrared cameras are inexpensive and can capture
images during the night albeit they loose the color
information. Typical algorithms used are temporal
differences [16] and optical flow [10].

3D approaches are based on stereo, structured
light [1], and time-of-flight [4] cameras. Stereo
cameras depend on textured patterns on the scene,
which are often not available in hospital environ-
ments. Structured light and time-of-flight cameras
are illumination independent and require no tex-
ture, hence are preferred [1, 2, 3, 8].

Most relevant to our work, Nakajim et Al. [10]
used optical flow on infrared cameras for sleep
analysis, Poh et Al. [12] noted how accurate fil-
tering can detect a fine vital signal (i.e. heath rate)
from color images, Centonze et Al. [4] used Kinect
v2 with a manual a Region of Interest to capture a
precise respiratory signal, this signal was used to
analyze breathing rate in different sleep stages, and
Wang et Al. [16] used infrared cameras on 15 sim-
ulated patients to detect apnea episodes using an
expert system, heavily parametrized.

Few approaches provide a fully automated anal-
ysis system, from the sensor to the actual analy-
sis result. Most require heavy manual calibration
and parameter tuning, and several require manual
steps like selection the Region of Interest, or visu-
ally evaluating the results.



Figure 2: Left: artificial top-down view generated from a Bed Aligned Map (BAM). The polysomnogram
sensors are visibly attached to the patient, however most patients slept under a blanket. Right: raw depth
map with the infrared camera superimposed. The black square is our bed aligned Region of Interest, which
is the same for all patients. Face obscured to preserve privacy.

3. Methodology
3.1. Dataset

We captured a dataset from a sleep laboratory.
Patients were simultaneously recorded using our
recording system (Fig. 1) and a polysomnogram
(Fig. 2) which we use as a reference. The dataset
is annotated by the sleep laboratory doctors with
labels for sleep position, stage, and apnea events.

Our monitoring system contains several cameras
alongside other sensors. In this study we use the
infrared camera (752x480@10Hz) and the depth
camera (PS1080, 640x480@30Hz).

We recorded 94 sleep analysis sessions of 67 pa-
tients from three rooms. Three bed sizes are used,
and the camera to chest distance is between 4 and
5 meters. From the polysomnogram, we use sig-
nals from the four contact sensors that are related
to respiration: a thermistor placed under the nose
measures the temperature differential, a barometer
placed also under the nose measures the pressure
differential, a chest band measures the extension
of the thorax, an abdomen band measures the ex-
tension of the abdomen.

We took 40 samples each night (a total of 3,760)
containing many challenging situations: empty
beds, patients sitting, changing sleep positions,
having apneas, etc. We discarded samples if at least
one polysomnogram sensor was disconnected, re-
ducing the total number to 3,239. We use a window
length of 30 seconds in order to obtain results that
are comparable to the ones captured manually by
doctors and nurses.

All patients were informed of the procedure and
but we did not place any limitations on their ac-
tions or routines. Therefore, patients used at will:
blankets of various thicknesses, a variable amount
and size of pillows, and several read books, news-
papers and magazines during the recording. Those
variables had no discernible impact on the results.

There is no uniquely defined ground truth for the
number of breaths of a sequence, precisely because
the definition of what constitutes a single breath
is fuzzy in several corner cases (e.g., interrupted
breaths, minimal expansion, coughing, etc.). Based
on the recommendations of our colleagues from the
sleep laboratory, we use the estimate obtained from
the thermistor placed under the nose as a reference.
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Figure 3: Workflow, default settings are in bold

3.2. Breathing rate estimation

Our algorithm (Fig. 3) takes as input a sequence
of images, obtains a Region of Interest (Rol), and
for each pixel within the Rol creates a trajectory in
the time domain, which contains all the pixel values
over the sequence.

The Power Spectral Density (PSD) of every tra-
jectory is calculated using fast Fourier transform,
and a filter is optionally applied to each PSD.

The PSDs from all trajectories are aggregated
together, and the location of its peak is found us-
ing quadratic interpolation.

Note that the information about the frequency
is on the location of the peak, not its magnitude,
hence the units and magnitudes actually used for
the trajectories are irrelevant.

3.2.1 Input sources

We evaluate both depth and infrared cameras as in-
put sources. In both cases the images were com-
pressed using a lossless algorithm, as we found
out that even the slightest image degradation had
a strong negative performance impact.

The depth camera provides distance readings,
and thus is preferred to monitor respiration related
movements. However, the resolution and noise of
depth cameras degrade easily with the distance,
and at the 4-5 meter range used in our setting the
PS1080 provides very noisy data. Only by consid-
ering the sequence as a whole, the main spectral
component can be recovered.

Trajectories from the infrared camera represent
the intensity variation of a pixel over the sequence.
Although its performance depends strongly on the
environment, light conditions, and available tex-
ture, it is intrinsically less affected by the distance
to the chest, and has a significantly better effective
resolution (for the effective resolution of PS1080
cameras, see [9]). Furthermore, infrared cameras
are less expensive than depth cameras, so it is worth
to evaluate its performance.

3.2.2 Dynamic Region-of-Interest

We boost the signal-to-noise ratio by dropping
out non-relevant pixels using a Region-of-Interest
(RoD).

We suggest to use a dynamic Rol that is an-
chored to the bed position. This is necessary for
unattended monitoring, as our camera is fixed to the
ceiling, but beds may change position often (e.g., in
hospitals and nursery homes).

The bed is automatically located once per night
using the Bed Aligned Map algorithm [7] and the
region of interest is centered on the chest area, as
seen in Fig. 2.

We also evaluate a fixed Rol. The fixed Rol is
equivalent to the dynamic Rol, only that the bed
position is not updated for each recording, and thus
it is not dynamically aligned to the bed.



3.2.3 Early Fourier Fusion

To generate a strong signal we must fuse as many
trajectories as possible. There are two main trends
on how to perform the fusion. We can simply ag-
gregate all temporal trajectories, hoping that the
noise gets canceled while the main signal raises
above the noise level. Or we can do some in-
telligent fusion using either Principal Component
Analysis [14, 8] or Independent Component Anal-
ysis [13].

In both cases, it is assumed that the signal we
capture is in phase on all trajectories, however this
is not the case for breathing. As we breath, we
move our environment, parts of the bed clothing
rise, while other parts sink. Those parts would have
the same frequency, but different phase.

This is the main motivation behind our Early
Fourier Fusion technique. Instead of fusing tem-
poral trajectories and estimate the PSD of the fused
trajectory, we first estimate the PSD of each indi-
vidual trajectory before fusing them. As the PSD
effectively eliminates the phase of the signal, it en-
sures that there is no destructive inference between
two useful signals.

3.2.4 Frequency filter

Before aggregation, we apply a very conservative
filter to each PSD: we keep only the trajectories
whose mean power/BPM is larger inside the region
between 6 BPM and 60 BPM than outside. This
effectively limits our range of detected frequencies
from 6 BPM to 60 BPM, which is an acceptable
range to detect using a 30 second window.

3.3. Confidence test

As our system performs continuous monitoring
instead of independent measurements, we need to
deal with cases where the bed is empty, or the pa-
tient is coughing, talking or changing sleep posi-
tions, etc. A nurse would not measure breathing
rate in those situations where the outcome would
not be considered reliable. Thus an automated
monitoring system should not report the breathing
rate in those situations. However, this raises the
challenge of detecting unreliable situations.
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Figure 4: Breathing rate predicted from other
polysomnogram signals is accurate to 1 Breaths
per Minute (BPM) only in 87% of the sequences.

We suggest a confidence test based on agitation.
If we detect minimal levels of agitation, we expect
the bed to be empty and thus we discard the seg-
ment. If we detect excessively high levels of ag-
itation, we expect that a singular event happened
(change in sleep position, coughing, etc.), and we
discard the estimation.

We use an agitation metric based on BAMs [7].
It is defined as the volume between the maximum
and the minimum convex hull of the bed within
a second. We average the agitation over the se-
quence, and we set the low and high thresholds at
0.03m3 and 0.6m? respectively.

4. Evaluation

We use acceptance curves for evaluation. The x
axis is the acceptance threshold, while the y axis is
the percentage of samples that provide an estimate
within the acceptance threshold to our reference.

4.0.1 Baseline

As a baseline, we evaluate how well can we predict
our reference breathing rate, obtained from the nose
thermistor, using the other polysomnogram signals
as a source (see Fig. 4).

We can see that an agreement better than 1
breath per minute (BPM) is achieved in only 87%
of the sequences.



4.1. Algorithm
4.1.1 Sensor input

Our results show how the depth camera provides
significant better performance than infrared im-
ages, as expected (see Fig. 5.a). In the hospital set-
ting, where our dataset was captured, the bed cloth-
ing has very little texture where changes in the in-
frared image can be tracked. Therefore we use the
depth camera as default.

4.1.2 Region of Interest

Our experiments show that using a Rol is critical
to obtain good results (see Fig. 5.b). In our dataset
there is little variation between bed positions, hence
the fixed Rol, whose position is fixed relative to the
camera field of view, provides a large performance
boost. However, the dynamic Rol, whose position
is relative to the bed localization, is even better.

These results suggest that there is still room
for improvement when selecting the right Rol size.
The Rol size needs to balance two properties. A
large Rol will capture breathing in segments where
the patient is lying on the edges of the bed, or in less
common positions. But a smaller Rol would pro-
vide better signal-to-noise ratio, and thus improve
the accuracy if the patient is breathing faintly. As a
consequence, we expect that adapting dynamic also
the Rol size would improve the results.

4.1.3 Merging Style

Given the distance between the camera and the pa-
tient, Principal Component Analysis (PCA) based
algorithms do not provide acceptable results, in
particular, if a denoise step like Durbin-Watson is
used (see Fig. 5.c).

The Durbin-Watson statistical test is meant to
remove trajectories with low autocorrelation, how-
ever the minimum resolution of the depth camera
at such distances is so large that the signal appears
randomly dithered, and thus shows very little auto-
correlation. The same applies for the correlation
between different trajectories, which is minimal,
hence the failure of the PCAs.
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Figure 5: Accuracy under different algorithm con-
figurations: (a) the depth camera performs signif-
icantly better than an infrared camera as a source,
(b) the dynamic Rol provides a performance edge
over the fixed Rol, (c) our Early Fourier Fusion
outperforms a traditional fusing algorithm (Durbin-
Watson+PCA).



4.2. Sleep conditions analysis
4.2.1 Sleep position

Although the breathing motion of the chest is not
directly observable if the patient is lying in a lat-
eral position, the motion is transferred to the sur-
roundings of the patient (bed clothing, arms, pil-
low) where it can be observed. Hence, the sleep
position of the patient has no significant impact on
the accuracy (see Fig. 6.a). Albeit the supine po-
sition shows the worst performance, this happens
because most apnea events occur while the patient
is in supine position.

4.2.2 Sleep stage

Results for sleep stage accuracy exhibit our ex-
pected behavior as the system performs better if
the patient is relaxed (see Fig. 6.b). At the same
time, patients have difficulties to sleep deep when
having apneas, thus deep sleep is correlated with
sequences with low rate of apneas.

4.2.3 Apnea events

Apnea events have a large accuracy impact (see
Fig. 6.c). Hypoapneas are defined as a 30% reduc-
tion of air flow for more than 10 seconds, therefore
breathing is usually shallow, but nonetheless exis-
tent. Central apneas represent a breathing pause
larger than 10 seconds, which then resumes un-
eventfully. As 10 seconds are a significant part of
the 30 second segment we use, the signal degrada-
tion is larger.

Obstructive apneas happen when the upper res-
piratory tract is obstructed: the diaphragm tries to
expel the air from the lungs, but only manages to
send it to the stomach, where it is sent again to the
lungs. This stage is known as paradoxal breath-
ing, and is manifested in the polysomnogram as a
phase shift between chest and abdomen breathing
signals. This stage is interrupted when the oxygen
saturation in the blood drops enough to arouse the
patient, who makes an conscious effort to unlock
the airways. The breathing rate is non regular, and
thus do not express a large peak on the spectra.
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Figure 6: Accuracy under different sleep condi-
tions: (a) sleep position has no significant perfor-
mance impact, (b) the algorithm performs better if
the patient is sleeping, (c) the performance of the
system is degraded during apnea events, in particu-
lar during obstructive apnea. The number enclosed
in parentheses is the incidence rate of each class.
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Figure 7: We evaluate our system’s performance on each patient. Top: results from our algorithm (accuracy
85.9%). Bottom: Results from the chest band used in the polysomnogram (accuracy 88.7%). Note the
behavior similarity between the depth camera and the chest band sensor.

4.3. Per patient evaluation

We evaluate our system predictions for each pa-
tient, and compare to the breathing rate predictions
from the chest band. In our representation, each
sequence is color coded. Green represents that the
sequence produced a confident estimation, and it
was within 2 BPM of the reference, the thermistor.
Red means that the sequence produced a confident
estimation, and it was not within 2 BPM of the ref-
erence. Gray indicates that the sequence did not
pass the confidence test (see Fig. 7).

This way we can evaluate if the results are con-
sistent among all patients. We found out that, for
most patients, our system behaves like the chest
band. However we have two outliers: patient 24
and 35 were significantly better recognized using
the chest band than from the depth camera. Two pa-
tients out of 67 are not significant enough to extract
conclusions, therefore further research is required.

5. Conclusions

We have presented an algorithm that monitors
breathing rate during sleep from a depth camera in
a very challenging setting: a sleep laboratory.

Our Early Fourier Fusion algorithm fuses the in-
formation from different parts of the image at the
Power Spectral Density level, allowing us to com-
bine signals that are not in phase.

Most importantly, we evaluated our approach on
67 patients from a sleep laboratory, showing that
breathing rate can be detected accurately under dif-
ferent sleep positions and stages, however respira-
tory conditions like apnea can reduce the perfor-
mance of the system significantly.

Our system achieves similar results of that of a
contact chest sensor. This indicates that computer
vision is precise enough for the task, and to im-
prove our results we would need to improve the
recognition algorithm instead.
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