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Abstract The aim of the SPHERE project is to develop a compact
device that monitors sleep using computer vision. Our system
attaches to the ceiling above the bed and integrates infrared and
depth cameras, alongside other auxiliary sensors. We installed
systems in a nursery home and a sleep laboratory, allowing us to
evaluate algorithms that analyze respiration, sleep position and
agitation. Compared to other sleep monitoring modalities, com-
puter vision is non-intrusive, and provides a holistic understand-
ing of the bed environment, enabling better alarm systems and
cleaner sleep summaries.
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1 Introduction

Lack of sufficient quality sleep can lead to mental and physical health
problems, diminished awareness status and reduced quality of life. This
is aggravated on elderly patients, as the ability to sleep deteriorates with
age.

There are effective ways to treat most sleep disorders, but they need
to be diagnosed first. To perform such diagnoses, patients spend the
night at the hospital while being monitored by up to a hundred contact
sensors. The sensor report (named polysomnogram) is then reviewed
manually. This protocol has significant human and material costs, re-
sulting in waiting lists of several months long.
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In nursery homes it is not feasible to throughly monitor the sleep
quality of every resident, as a result, most sleep disorders stay undiag-
nosed. Night watch nurses already need to deal with residents falling
out of the bed, having panic attacks, etc. To assist in their task, modern
nursery homes have all sorts of intelligent sensors (infrared, or pressure
sensors usually) to detect if a bed is occupied or empty, or if a person
has fallen out of it. The aim is to minimize the duration between an ac-
cident and the arrival of the assistance. The sensors are very sensitive
to avoid missing actual dangerous events, therefore they often trigger
false alarms, and thus are a source of alarm fatigue, which lowers their
usefulness.

We created the SPHERE project with the aim to help to improve the
diagnose rate of sleep disorders by monitoring sleep quality indicators,
and to generate more reliable alarms for accidents. By using Computer
Vision we can explore the bed and its surroundings, allowing us to de-
velop holistic algorithms that provide better understanding of the situ-
ation.

We have developed a Medical Recording Device (MRD) [1] with
several cameras alongside other auxiliary sensors that works au-
tonomously. We collaborate with a nursery home and the sleep labo-
ratory from the ThoraxKlinikum Heidelberg (THX), who is interested
in portable monitoring systems.

Our collaborations are a great advantage over alternative studies
which rely on simulated patients and environments. Our experiments
and results reveal a huge performance gap between simulated and real
scenarios, the latter clearly being more challenging. We leverage on this
advantage by learning from the data we collected, and design our algo-
rithms accordingly.

In this paper we describe in detail the problem of continuously mon-
itoring respiration rate on real patients, and then we show state-of-the-
art algorithms for sleep position and agitation quantification, which we
use to provide nighly sleep quality summaries
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Figure 1.1: Left to right: front view of our Medical Recording Device, view of
the internals, and rear view (including VESA mount). The device has five PCBs
of which three have been custom designed for the project.

2 Medical Recording Device

Our Medical Recording Device (MRD) [1] is compact (120x180x55mm)
and attaches to the ceiling above the bed via a standard VESA mount.
Integrates depth [2, 3], stereo and mono cameras; stereo microphone,
temperature, pressure, humidity and light sensors; a 4-core ARM CPU
with storage, ethernet, WiFi, and bluetooth.

As we need to record in the darkness, we use infrared sensible image
sensors with active infrared illumination. The infrared light is projected
to the ceiling which reflects over the patient, providing uniformly illu-
minated images.

The device requires a fan for cooling, but its speed is dynamically
controlled and the device is virtually silent by night. It is CE compliant,
in order to be installed in hospitals and nursery homes.

We use the hardware compression engine to compress the grayscale
images in h264 format, while the quadcores is used to compress the
depth maps from the camera using a custom lossless codec.

Our management software recovers automatically from any major
flaw, our 7 installed units have accumulated more than 5,000 hours of
continuous use without malfunction.
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Figure 1.2: Left: our Medical Recording Device (MRD) on the ceiling of an In-
tensive Care Unit (ICU). Right: the Bed Aligned Map (BAM), a low resolution,
height-based descriptor aligned to the bed. Obtained from a depth camera, its
privacy conscious and robust to light and orientation variations.

3 Bed Aligned Maps

We capture spatial information from a depth camera and use the bed
position, which is automatically estimated, to align the point cloud. The
bed matress is divided in equal sized cells, and the mean cell height
above the mattress is stored, as seen in Fig. 1.2. We call the resulting
low dimensional descriptor Bed Aligned Map (BAM) [4].

Resolution is an important trade-off for BAM. Lower resolution pro-
vides better depth estimates, minor storage requirements, and bet-
ter privacy protection. However, too low of a resolution may dis-
card important spatial information. Unless stated otherwise, we use
10cmx10cm cell BAMS, which translates to a descriptor size between
8x20 for the most narrow bed in our database, to 13x20 for the widest.

BAMs are scale, orientation, light and alignment independent, while
occlusions are generally filtered out by a raytracing algorithm. This not
only makes our algorithms robust to the common ailments of Computer
Vision, but also reduces the amount of data we need to collect to train
our machine learning tools, as the differences induced by varying sce-
narios are reduced.

Furthermore, storing BAMs has practical advantages over storing
RAW image data: it reduces the storage requirement, which are sub-
stantial when performing long term sleep monitoring, and BAMs are
ethically friendly, as the subjects are not recognizable.
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4 Respiration Analysis

Against the general impression, respiration is a very complex signal
to retrieve in real conditions. The respiration control system is semi-
autonomic: the muscles involved can be voluntarily controlled, but the
autonomous system will take care as soon the voluntary control stops.
This is important as our respiration pattern changes when we speak,
or move our body or become agitated. There exist multitude of events
that alter our breathing, some are very common (e.g. snoring, coughing),
and some are less common but important nevertheless, like obstructive
apnoea. In obstructive apnoea the upper airways are blocked and the
diaphragm moves the air from the lungs to the stomach and back, re-
sulting in chest motion but no air exchange.

If an instant breath rate measurement is required in an hospital, it is
usually taken by a nurse. The patient will be told not to move or talk for a
while, and the nurse will count the number of chest excursions during a
set period of time. In case of coughing or agitation, the nurse will repeat
the test.

On polysomnograms, respiration is monitored using no less than 5
sensors: a thermistor placed under the nose measures the temperature
differential, a barometer placed under the nose measures the pressure
differential, a chest band measures the extension of the thorax, an ab-
domen band measures the extension of the abdomen, finally, a video
stream records the full session.

Measuring the respiration rate can be as simple as counting chest
excursions, but only on very simple scenarios. In SPHERE we want
to evaluate how well can we continuously estimate breath rate using a
depth camera to measure chest excursions in an unconstrained scenario.

4.1 Methodology

We use a dataset obtained from the ThoraxKlinik Heidelberg containing
99 recorded polysomnogram sessions (81 different patients). We took 40
samples for each night, generating a total of 3960 samples, each being
30 seconds long. Several samples contain challenging situations: empty
beds, patients sitting, changing sleep positions, having apnoeas, etc. We
use the thermistor signal as a reference for evaluation purposes.

From our MRD, we use a grayscale camera (752x480@10Hz) and a
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Figure 1.3: Left: Bed Aligned Map (BAM) generated depth map with infrared
image overimposed. Right: Raw disparity image with infrared camera super-
imposed. In green are displayed the BAM grid used for alignment. The black
square is the Region of Interest selected (the same for all patients). Face is hid-
den to preserve privacy.

depth camera (PS1080 based, 640x480@30Hz). Three different bed sizes
are used in the study.

To obtain the breathing rate we calculate the Power Spectral Den-
sity (PSD) with 8x interpolation. On 30 second windows, this gives
us a resolution of 0.25 Breaths Per Minute (BPM). The breathing rate
reported is given by the position of the largest peak.

Our evaluation is performed using an acceptance curve: on the x axis
we have our acceptance threshold, and on the y axis we plot the per-
centage of samples that provide estimates within the threshold distance
to our reference (the thermistor signal).

4.2 Breathing rate recognition from images

In a previous work [5], we showed analytically that the signal-to-noise
ratio for the breathing signal is inversely proportional to the 4th power
of the distance when captured by cameras. Most studies place the depth
camera at distances between 70cm and 1m [6] to the chest, at those dis-
tances, no signal processing is needed to obtain a clean signal. However,
as we need to attach the camera to the ceiling to capture the whole en-
vironment without obstructions, our distance to the chest is around 4
meters. At 4 meters, the breathing signal we record is 256 times (24dB)
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Figure 1.4: The acceptance curves for our breath rate recognition algorithm
show the ratio of samples providing an estimate within the accepted threshold.
We evaluate the algorithm under different sensor modalities (a), sleep stages
(b), respiration disorders (c) and sleep positions (d).

weaker than at 1 meter, therefore it is crucial to perform signal process-
ing to recover the breathing signal from the background noise.

Our previous approach used PCA combined with Durbin-Watson fil-
ters to fuse trajectories [5]. This approach aggressively discards noisy
samples to create a very clean signal estimate, however at 4 meters all
samples are noisy, and the approach fails to produce an estimate at all.

We use a simpler fusion strategy. First, we create a trajectory for
each image pixel. Second, we filter out the pixels using a Region-of-
Interest (RoI). Third, we discard trajectories with significant discontinu-
ities. Fourth, we obtain the PSD of each trajectory, and discard pixels
whose power outside our interest band (3-30 BPM) is larger than inside.
Last, we aggregate the remaining PSD to create a single PSD estimation.

In our evaluation, we found that depth cameras perform significantly
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better than infrared cameras (see Fig. 1.4.a).

4.3 Effects of sleep stage, respiration disorders, sleep position

Due to the semi-autonomous nature of breathing, it is easier to recog-
nize breathing rate if the patient is sleeping (see Fig. 1.4.b). We appre-
ciate a strong impact of sleep disorders in our estimations (Fig. 1.4.b).
Sleep position has a surprising impact on our estimates: it is more
difficult to estimate breathing rate if the patient is in supine position
(Fig. 1.4.d). Our experience with the dataset suggests that our method
is as reliable in supine position than in left or right positions, however
there is a larger incidence of sleep disorders when sleeping in supine
position, inducing a bias in the measurement.

Our findings confirm that measuring breath rate is reliable if the sub-
ject is relaxed and breaths normally, but a chest movement estimator is
not sufficient by itself to diagnose respiration disorders.

4.4 Developing a confidence metric

As currently exposed, our system simply reports the location of the
maximum peak of the PSD, therefore it provides a breathing estimate
in all cases (even if there is no patient in the bed).

We use a simple metric to rate the confidence of our measurements.
We consider the ideal measurement to be a PSD consisting of a single,
powerful peak, while the worst measurement would provide an almost
uniform PSD with no discernible peak. The power of the signal is not
a good measure, as the breathing signal may be very weak, and a dis-
tractor signal might be very powerful, therefore we normalize the PSD
before rating it. Then we compare the normalized PSD to a uniform
PSD using the Earth Mover’s Distance [7], which is the natural metric
to use when comparing histograms. A low distance would imply that
our measurement is similar to the uniform PSD, and thus, not very reli-
able. Conversely, a large distance implies higher reliability.

By applying a simple threshold on such reliability metric, our esti-
mates using the depth camera coincide with the thermistor with a cor-
relation 0.998 (p-value < 0.0001), having a confidence interval of 0.383
Breaths per Minute for a 95% confidence level.
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Figure 1.5: CNN architecture used for sleep position classification. It follows a
conventional architecture of three convolutional and two fully connected layers.

(a) Chest Sensor (b) BAM + CNN

Table 1.1: Confusion matrix for the the gravity-based chest sensor worn in the
sleep laboratory (left) and our approach based on BAMs and CNNs (right).

5 Sleep Position

Sleep Position monitoring is crucial in nursery homes. Medication and
illnesses may prevent patients from changing sleep position themselves,
and this causes pressure ulcers. If patients do not change sleep position
themselves, nurses must move them. But keeping track of the sleep
position of all patients is complicated.

We use the deep convolutional neural network pictured in Fig. 1.5 to
classify sleep position from a single BAM into one of the following four
classes: ”Empty bed”, ”Left”, ”Supine”, or ”Right”. Evaluating on the
81 patinents from our sleep laboratory dataset, our algorithm achieves
an average accuracy of 93.0% with a Matthews Correlation Coefficient
(MCC) of 0.86. Therefore we outperform the gravity sensor used in the
sleep laboratory, which is directly attached to the patient’s chest and
uses an accelerometer to localize the gravity vector, and has an accuracy
of only 91.9% with a MCC of 0.84 on the same dataset (see Table. 1.1).
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Figure 1.6: 39 night sleep summary of a nursery home resident. The red bar
indicates bed occupancy, showing how the patient spent long hours outside the
bed towards the end of the study. The blue bar indicates agitated periods. Best
viewed in color.

6 Long term sleep summaries

One of the goals of the SPHERE project is to help assessing the long term
sleep quality of nursery home residents. Towards this goal, we gener-
ate nightly summaries of the patient sleep using two objective metrics
based on BAM: bed occupancy, and agitation.

We define bed occupancy as the volume occupied above the bed mat-
tress. It is simply calculated by adding together all BAM cells. This
indicator registers exactly when the patient goes to the bed and wakes
up, and helps to quantize the amount of sleep.

We use a custom designed agitation metric to complement bed oc-
cupancy. Agitation is a strong health indicator, however there is no
objective gold standard to measure it. We suggest to use the absolute
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variation of BAMs within one second as an agitation measure, which
has already shown compelling results [1, 4].

Both metrics together can summarize a large amount of information
in a compact view (see Fig. 1.6).

7 Conclusions

We have presented the SPHERE project, whose aim is to develop a sleep
monitoring system using computer vision. We developed a Medical
Recording Device (MRD). It is compact but integrates a wide variety of
sensors, including depth and infrarred cameras and it is CE certified.
Seven units currently installed in real locations have accumulated more
than 5,000 hours without incident.

While the MRD is the hardware backbone of the project, the software
backbone is the Bed Aligned Map (BAM), a compact image descriptor
based on depth that provides alignment and is robust to common image
aliments (light, position, rotation, scale). Using BAMs obtained from
the MRD, we have shown algorithms that estimate breath rate, sleep
position, agitation and bed occupancy.

More importantly, SPHERE has been designed to be evaluated in real
scenarios instead of simulated ones. This has revealed how tasks that
were considered simple are actually very challenging when performed
in unconstrained scenarios (e.g. breath rate estimation).

We hope that SPHERE represents a big step forward towards the de-
velopment of automated and non-intrusive sleep monitoring devices
that can be deployed in nursery homes and assisted living installations.
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