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ABSTRACT

Identifying verbally and non-verbally referred-to objects is an im-
portant aspect of human-robot interaction. Most importantly, it is
essential to achieve a joint focus of attention and, thus, a natural
interaction behavior. In this contribution, we introduce a saliency-
based model that reflects how multi-modal referring acts influence
the visual search, i.e. the task to find a specific object in a scene.
Therefore, we combine positional information obtained from point-
ing gestures with contextual knowledge about the visual appear-
ance of the referred-to object obtained from language. The avail-
able information is then integrated into a biologically-motivated
saliency model that forms the basis for visual search. We prove
the feasibility of the proposed approach by presenting the results of
an experimental evaluation.

Categories and Subject Descriptors

1.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
Perceptual reasoning; 1.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis; H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces

General Terms

Design, Algorithms, Experimentation

Keywords

Saliency, Attention, Visual Search, Multi-Modal, Gestures, Point-
ing, Language, Color, Objects, Shared Attention, Joint Attention,
Deictic Interaction, Human-Robot Interaction

1. INTRODUCTION

Attention is the cognitive process that focuses the processing
of sensory information onto salient data, i.e. data that likely ren-
ders objects of interest (cf. [18]). Since robots have limited com-
putational resources, computational models of attention have at-
tracted an increasing interest in the field of robotics to facilitate
real-time processing of the sensory information in natural environ-
ments (e.g. [9, 18, 55]). A key aspect of natural interaction is the
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1. ’Who owns the red book?’

Figure 1: Example of the presented approach, left-to-right:
the images, their multi-modal saliency maps, and the resulting
shifts of the focus of attention (FoA; the initial FoA is marked
blue). The presented approach reflects how pointing gestures
and verbal object references efficiently guide the perceptual fo-
cus of attention towards the referred-to object of interest.

use of verbal and non-verbal signals to establish a joint focus of at-
tention (e.g. [1, 10, 19, 38, 40, 48]). Generating and responding to
these multi-modal referring acts allows to share a common point of
reference with an interaction partner and is fundamental for “learn-
ing, language, and sophisticated social competencies” [32]. How-
ever, such mechanisms are hardly realized in current robotics or
computational attention systems.

When talking about focus of attention in interaction, we have
to distinguish between the focus of attention within the domain of
conversation (simplified speaking, what people are talking about),
and the perceptual focus of attention (most importantly, where peo-
ple are looking at). In many situations, the conversational focus
of attention and the perceptual focus of attention are distinct. How-
ever, when persons are referring to specifc objects within the shared
spatial environment, multi-modal references are applied in order to
direct the perceptional focus of attention towards the referent and
achieve a shared conversational focus of attention. Accordingly,
we have to distinguish between the saliency of objects in the con-



text of the conversation domain at some point during the interaction
and the inherent, perceptual saliency of objects present in the scene
(cf. [4]). Although the conversational domain is most important
when identifying the referent — especially when considering ob-
ject relations —, the perceptual saliency influences the generation
and interpretation of multi-modal referring acts to such extend that
in some situations “listeners [...] identify objects on the basis of
ambiguous references by choosing the object that was perceptually
most salient” [4, 11].

In this contribution, we introduce a coherent saliency-based model
and its implementation, which interprets common joint attention
signals (cf. [32]) in order to direct the visual attention towards
multi-modal referents, i.e. verbally and non-verbally referred-to
objects (see Fig. 1). The model enables us to produce visual search
paths for efficient scene analysis, realize natural eye gaze patterns,
and predict multi-modal referents for interactive tasks in natural
environments. Therefore, we interpret verbal and non-verbal ref-
erences as composite signals (cf. [1, 4]). Accordingly, we define
a composite saliency model that reflects verbal references in the
bottom-up saliency and uses a top-down saliency map to reflect that
most non-verbal signals, most importantly gaze and pointing, shift
the attention into the indicated spatial region rather than identify-
ing objects directly (cf. [10]). We apply a modulatable bottom-up
saliency model to reflect contextual knowledge about the visual ap-
pearance of the referred-to object. The chosen model allows us to
integrate different degrees of knowledge in the saliency — and thus
the focus of attention — calculation of regions in the visual field.
In this contribution, we consider colors and the visual appearance
of specific objects, mainly because strong evidence exists that their
knowledge directly influences the visual search (cf. [34, 56]). Com-
plementary, we create a top-down saliency map that models the re-
gional information of non-verbals signals such as, e.g., gaze and
pointing. We reflect that these signals direct the gaze to an approx-
imate spatial region and circumscribe a referential domain, rather
than identifying the referent directly (cf. [1]). In this contribution,
we focus on the combination of language and pointing gestures,
because their combined use has been studied extensively in psy-
chological research and these cues have been found to be roughly
equally important for resolving referring acts [38].

The rest of this paper is organized as follows: First, we provide
a brief overview of related work in Sec. 2. In Sec. 3, we describe
how we determine verbal and non-verbal references. Subsequently,
in Sec. 4, we present our composite saliency model. In Sec. 5,
we present the results of a experimental evaluation to assess the
performance of the presented approach. We conclude with a brief
summary and an outlook on future work in Sec. 6.

2. RELATED WORK

In the following, we describe the most relevant related work in
the fields of computational attention, joint attention, pointing ges-
ture interpretation, language processing, and color naming.

2.1 Attention

Attention has attracted an increasing interest for robotics to en-
able efficient scene exploration (e.g. [9, 41, 46, 55]) and analysis
(e.g. [5, 6, 17, 30, 46, 54, 55]). Therefore, assuming that inter-
esting objects are visually salient (cf. [13]), computational models
of attention (cf. [18]) are applied to focus the limited computa-
tional resources onto salient sensor data, i.e. data that likely ren-
ders interesting aspects. In general, visual saliency models can be
characterized as either object-based (e.g. [50, 37]) or space-based
(e.g. [20, 34]). Object-based attention models assume that visual at-
tention can directly select distinct objects and consequently assign

saliency values to each visible object. In contrast, the traditional
space-based models assign saliency values to continuous spatial
regions within the visual field. Recently, (space-based) saliency
models based on the phase spectrum [20, 23] have attracted increas-
ing interest (e.g. applied in [30] and [44]). These models exploit
that suppressing the magnitude components of signals accentuates
lines, edges and other narrow events (cf. [36]).

Most computational models of attention are based on a saliency
map to predict human eye fixation patterns and visual search be-
haviors. The latter addresses the task to search for specific stim-
uli, e.g. objects, in an image. It has been shown that knowledge
about the target object influences the saliency to speed-up the vi-
sual search (cf. [47, 56]). But, only specific information that speci-
fies preattentive features allows such top-down guidance (cf. [56]).
For example, as in the presented implementation, having seen the
target before or knowing its color reduces the search slope, and —
in contrast — categorical information (e.g. “animal” or “post card”)
usually fails to provide top-down guidance (cf. [56]). Accordingly,
in recent years, various computational saliency models have been
developed that are able to integrate top-down knowledge in order to
guide the attention in goal-directed search (e.g. [17, 24, 34, 53]). In
[34] a saliency model is introduced that allows to predict the visual
search pattern given knowledge about the visual appearance of the
target and/or distractors. Therefore, the expected signal-to-noise,
i.e. target-to-distractor, ratio (SNR) of the saliency combination
accross and within the feature dimensions is maximized.

2.2 Joint Attention

Since we model the influence of verbal object specifications and
pointing gestures on the visual search, i.e. the perceptual saliency,
our work is closely related to establishing a joint focus of attention,
which describes the human ability to verbally and non-verbally
coordinate the focus of attention with interaction partners by ei-
ther directing their attention towards interesting objects, persons, or
events, or by responding to their attention drawing signals. Accord-
ingly, it is an important aspect of natural interaction and has thus
attracted a wide interest in the related fields; most importantly, in
psychology (e.g. [1, 28, 32]), computational linguistics (e.g. [48]),
computer vision (e.g. [52]), and robotics (e.g. [8, 25, 33, 48, 49,
15]). Consequently, initiating (IJA; e.g. [12, 48, 49]) and respond-
ing to joint attention signals (RJA; e.g. [8, 49, 52]) are crucial tasks
for social robots.

2.3 Pointing

Pointing gestures are an important non-verbal signal to direct
the attention towards a spatial region or direction and establish a
joint focus of attention (cf. [1, 19, 21, 38, 28]). Accordingly, visu-
ally recognizing pointing gestures and inferring a referent or target
direction has been addressed by several authors; e.g., for interac-
tion with smart environments (e.g. [39]), wearable visual interfaces
(e.g. [22]), and robots (e.g. [21, 26, 35, 42, 45]). Unfortunately,
most of these systems require that the objects present in the scene
were already detected, segmented, recognized, categorized and/or
their attributes identified. This stands in contrast to our approach
that uses space-based saliency to direct the attention towards the
referent and determine referent hypotheses. In most situations,
non-verbal signals — such as pointing and, e.g., gaze — circumscribe
a referential domain by directing the attention towards an approxi-
mate spatial region (cf. [1]). Naturally, this can clearly identify the
referent in simple, non-ambiguous situations. However, as pointing
gestures are inherently inaccurate in ambiguous situations (cf. [10,
26]), context knowledge may be necessary to clearly identify the
referent (cf. [28, 49]).



2.4 Language

Language is the most important method to provide further, con-
textual knowledge about the referent. Although the combined use
of gestures and language depends on the referring persons (cf. [38]),
linguistic and gestural references can be seen to form composite
signals, i.e. as one signal becomes more ambiguous the speaker
will less rely on it and compensate with the other (cf. [1, 4, 19,
26, 28, 38, 49]). When directly verbally referring to an object,
most information about the referent is encoded in the noun-phrases,
which consist of determiners (e.g. “that”), modifiers (e.g. “red”)
and a head-noun (e.g. “book”). To analyze the structure of sen-
tences and extract such information, tagging and shallow parsing
can be applied. In corpus linguistics, part-of-speech (POS) tagging
marks the words of a sentence with their grammatical function,
e.g. demonstrative, adjective, and noun. Based on these grammat-
ical tags and the original sentence, shallow parsing determines the
constituents of a sentence as, e.g., noun-phrases. Commonly, ma-
chine learning methods are used to train taggers and shallow parsers
on manually tagged linguistic corpora (e.g. [16, 51]). The well-
established Brill tagger uses a combination of defined and learned
transformation rules for tagging [7]. However, this requires an ini-
tial tagging, which is commonly provided by stochastic n-gram or
regular expression taggers (cf. [7]).

2.5 Color Terms

When verbally referring-to objects, relative and absolute features
can be used to describe the referent (cf. [4]). Relative features re-
quire reference entities for identification (e.g. “the left cup”, or
“the big cup”), whereas absolute features do not require compar-
ative object entities (e.g. “the red cup”). Possibly the most basic
absolute object features are the name, class, and color. When ver-
bally referring-to color, color terms (e.g. “green”, “dark blue”, or
“yellow-green”) are used in order to describe the perceived color
(cf. [31]). In [3], the cross-cultural concept of universal “basic color
terms” is introduced, circumscribing that there exists a limited set
of basic color terms in each language of which all other colors are
considered to be variants (e.g. the 11 basic color terms for english
are: “black,” “white,” “red,” “green,” “yellow,” “blue,” “brown,”
“orange,” “pink,” “purple,” and “gray”).

In order to relate the visual appearance of objects with appropri-
ate color terms, color models for the color terms are required. Tra-
ditionally these models are either manually defined by experts or
derived from collections of manually labelled color-chips (cf. [31]).
Alternatively, image search engines in the Internet can be used in
order to collect huge weakly labelled data sets, in order to learn
robust color models (cf. [43]).

3. DETERMINING OBJECT REFERENCES

In this section, we describe how we determine the necessary in-
formation to calculate the saliency maps. First, we explain how
we handle linguistic object references. Then, we describe how we
detect pointing gestures and estimate their inherent inaccuracy.

3.1 Language

Language often provides the discriminating context to identify
the referent (cf. Sec. 2). Most importantly, it is used to specify
objects (e.g. “my Ardbeg whisky package”), classes (e.g. “whisky
package”), visually deducible attributes (e.g. “red”, or “big”), and/or
relations (e.g. “the cup on that table”). When directly referring
to an object, this information is encoded in noun-phrases as pre-
modifiers, if placed before the head-noun, and/or as post-modifiers
after the head-noun (cf. [4]). In this contribution, we focus on noun-
phrases with adjectives and nouns acting as pre-modifiers (e.g. “the

yellow cup” and “the office door”, respectively). We do not ad-
dress verb phrases acting as pre-modifiers (e.g. “the swiftly open-
ing door”), because these refer to activities or events which cannot
be handled by our vision system. Furthermore, in order to avoid in-
depth semantic analysis, we ignore post-modifiers which typically
are formed by clauses and preposition phrases in noun phrases (e.g.
“the author whose paper is reviewed” and “the cup on the table”, re-
spectively).

In our implementation, we determine the noun-phrases and their
constituents with a shallow parser which is based on regular expres-
sions and was tested on the CoNLL-2000 Corpus [51]. Therefore,
we trained a Brill tagger, which is backed-off by a n-gram and reg-
ular expression tagger, on the Brown corpus [16].

Once we have identified the referring noun-phrase and its con-
stituents, we determine the linguistic descriptions that influence
our saliency model. First, we match the adjectives against a set
of known attributes and their respective linguistic descriptions. In
this contribution, we focus on the 11 English basic color terms
[3]. However, please note we can easily extend the color models
to deal with other terms as well (see Sec. 4.1.1; cf. [43]). Further-
more, we try to identify references to known object entities (see
Sec. 4.1.2). Therefore, we match the object specification (consist-
ing of the pre-modifiers and the head-noun) with a database that
stores known object entities and their (exemplary) specifications or
names, respectively. We also include adjectives in this matching
process, because otherwise semantic analysis is required to handle
ambiguous expressions (as e.g. “the Intelligent Systems Book™ or
“the Red Bull Can”). However, usually either attributes or exact
object specification are used, because their combined use is redun-
dant. A major difficulty is that the use of object specifiers varies
depending on the user, the conversational context, and the environ-
ment. Thus, we have to regard partial specifier matches, e.g. “the
Hobbits” equals “the Hobbits cookies package”. Obviously, the
interpretation of these references depends on the shared conversa-
tional context. Given a set of known, possible, or plausible objects
(depending on the degree of available knowledge), we can treat this
problem with string and tree matching methods by interpreting each
specifier as node in a tree. Consequently, we use an edit distance
to measure the similarity (cf. [14]). In this contribution, we apply a
modified version of the Levenshtein distance which is normalized
by the number of directly matching words. Then, we determine
the best matching nodes in the tree of known specficitions. An
object reference is detected, if all nodes in the subtree defined by
the best matching node belong to the same object and there do not
exist multiple modes with equal minimum distance that belong to
different objects.

3.2 Pointing Gestures

Pointing Gestures direct the attention into the visual periphery,
which is indicated by the pointing direction (cf. Sec. 2). The point-
ing direction is defined by the origin 6 — usually the hand or finger
— and an estimation of the direction d. The referent can then be
expected to be located in the corridor of attention alongside the di-
rection. However, the accuracy of the pointing direction depends
on multiple factors: the inherent accuracy of the performed gesture
(cf. [2, 10, 26]), the method to infer the pointing direction (cf. [35]),
and the underlying implementation.

In our implementation, we use the line-of-sight model to calcu-
late the indicated direction (cf. [35, 39, 45]). In this model, the
pointing direction is equivalent to the line-of-sight defined by the
position of the eyes h and the pointing hand 6, and accounts for
“the fact that [in many situations; A/N] people point by aligning
the tip of their pointing finger with their dominant eye” [2]. In or-



Figure 2: Saliency example, left-to-right: the original image I, the visual saliency map Sg (modulated with the background distri-
bution as distractor model and a uniform target model), the top-down pointing map S, and the combination result S = (Sg - St).
In this example is the referred-to blue cup directly selected in the initial FoA.

der to recognize pointing gestures, we use an approach similar to
[39]. However, we replaced the face detector with a head shoul-
der detector based on histograms of oriented gradients to improve
the robustness. We detect the occurrence of a pointing gesture by
trying to detect the inherent holding phase of the pointing hand.
Therefore, we group the origin 6; and direction dy hypotheses over
time ¢ and select sufficiently large temporal clusters.

We consider three sources of inaccuracy: Due to image noise
and algorithmic discontinuities the detected head-shoulder rectan-
gles exhibit a position and scaling jitter. Thus, in order to model the
uncertainty caused by estimating the eye position from the detec-
tion rectangle 7 (at time ¢), we use a Normal distribution around
the detection center #; to model the uncertainty of the estimated
eye position pe (z|r) = N (74, 02). e is chosen so that one quar-
ter of 5 is covered by 20, i.e. 0. = 5/8, where § is the mean
of the detection rectangle’s size over the last image frames. Fur-
thermore, we consider the variation in size of the head-shoulder
detection rectangle, and the uncertainty of the estimated pointing
direction cf, which is caused by shifts in the head and hand detec-
tion centers. We treat them as independent Gaussian noise com-
ponents and estimate their variances o2 and aﬁ. As o2 and o2
are variances over positions, we approximately transfer them into
an angular form (52 = o2/r® and 62 = o2/, respectively) by
normalizing with the length 7 = ||d||. This approximation has the
additional benefit to reflect that the accuracy increases when the
distance to the pointer decreases and the arm is outstretched.

4. SALIENCY

In the following, we describe our saliency-based model that real-
izes the visual search. Therefore, we calculate the top-down mod-
ulated bottom-up saliency map Sg, depending on the information
about the target, and encode the regional information of the point-
ing gesture in the top-down saliency map St. These maps are then
integrated into a composite saliency map S, which forms the basis
to select the focus of attention.

4.1 Top-Down Modulated Visual Saliency

In order to calculate the top-down modulated visual saliency
map, we propose a combination of a modulatable neuron-based
saliency model [34] with a phase-based saliency model [20]. In
this model, each feature dimension j — e.g. hue, lightness, and ori-
entation — is encoded by a population of N; neurons with overlap-
ping Gaussian tuning curves and for each neuron n;; a multi-scale
saliency map s;; is calculated. Therefore, we calculate the response
n;; (I™) of each neuron for each scale m of the input image I and
apply magnitude suppression (cf. [20, 36]) in order to calculate the

feature maps
siy =gxF ! {6@(3{,1”(["")})} (1)

with the Fourier-Transform .%#, the Phase-Spectrum @, and an addi-
tional 2-D Gaussian filter g. Then, we normalize these single-scale
feature maps and use a convex combination in order to obtain the
cross-scale saliency map s;;

sip= Y wiN (sf) @
meM

m

with the weights w;’; and the normalization operator N'. The latter
performs a cross-scale normalization of the feature map range, at-
tenuates salient activation spots that are caused by local minima of
n;; (I™), and finally amplifies feature maps with prominent activa-
tion spots (cf. [24]). However, since we do not incorporate knowl-
edge about the size of the target, we define the weights w; as uni-
form, ie. > ., wi; = 1. The multi-scale saliency maps s;; of
each individual neuron are then combined to obtain the conspicuity
maps s; and the final saliency map Sg

N; N
S5 = E WijSij and SB = E Ww; Sy s (3)
i=1 =1

given the weights w; and w;;.

These weights are chosen in order to maximize the signal-to-
noise (SNR) ratio between the expected target and distractor saliency
(ST and S D)

C)

given known models of the target and distractor features (0||7" and
6||D). Therefore, we need to predict the SNR for each neuron
SNRy;, in order to obtain the optimal weights w; and w;; accord-
ing to

B SNR,; SNR;
Ly SNRy; % Sn_y SNRy,

Critical for this model is the prediction of each neurons’ SNR.
Especially because we aim at using general models for saliency
modulation that can also be applied for recognition and naming
of objects. This stands in contrast to most previous art, in which
saliency modulation was directly learned from target image sam-
ples (e.g. [17, 24, 34]; cf. [18]). In our implementation, we use
probabilistic target and distractor feature models (i.e. p(0||T) and
p(6]| D), respectively) and calculate SNR;; according to

Eg7,1[si5] r
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Figure 3: 1st row: exemplary acquisition of a model view and
the segmentation mask obtained with color spatial variance.
2nd row: marginal distributions of the corresponding HSL
color model. 3rd row: for comparison, uniform combination
of the “red” and ‘‘blue” color term models.

where Eg|7,;[s:;] and Egp,1[si;] is the expected saliency, ac-
cording to the calculated neuron saliency map s;;, of the respective
feature model in image I. Here the constant exponent « is an ad-
ditional parameter that influences the modulation strength. This is
especially useful when dealing with smooth feature models, e.g.
color term models (Sec. 4.1.1), in order to force a stronger modula-
tion (e.g. in our implementation choosing an « in the range of 2 -3
has proven to be beneficial).

We represent the target and distractor feature models by his-
tograms and acquire them as described in the following:

4.1.1 Color

The color models p(0||Teolor) (e.g. Fig. 3) are learned using the
Google-512 data set [43], which was gathered from the Internet for
the 11 English basic color terms (see Sec. 2.4). Therefore, we ap-
plied the probabilistic latent semantic analysis with a global back-
ground topic and pHSL as color model [43] in order to reflect the
different characteristics of real-world images and images retrieved
from the Internet. We use HSL as color space, because the color
channels are decoupled and thus support the use of independent
neurons for each channel. However, since color term models are as
general as possible (cf. Fig. 3), we can — in general — not expect as
strong modulation gains as with specific object models.

4.1.2  Object

The object models are estimated from an object database (see
Sec. 3.1) that we build using the presented attention system in a
learning mode. Therefore, we disable the top-down modulation and
instead place the object that shall be learned at a position where the
pointing reference is unambiguous. Then, we refer to the object via
a pointing gesture and a verbal specification. Similar to [44], our
system uses the pointing gesture to identify the referred-to object,
applies MSER-based segmentation [29] to roughly estimate the ob-
ject boundaries, and zooms towards the object to obtain a close-up
view for learning. The views acquired such are stored in a database,
in which they are linked with the verbal reference specification.
In addition to SIFT-based object recognition [44], we use these
model views to calculate the target feature model p(0||T,p;) for
each known object. Therefore, we perform a semi-automatic fore-
ground separation (see Fig. 3), exploiting the characteristic of the
color spatial variance (cf. [27]) of the model views in which the tar-
get object is usually well-centered. Then, we calculate p(6||Ton;)
as the feature distribution of the foreground image pixels. If multi-
ple instances of the object were detected in the database, we apply
a uniform combination to combine the models.

4.1.3 Distractor

In the absence of a pointing gesture, the model of distracting ob-
jects and background of each image p(6||D;) is estimated using
the feature distribution in the complete image. Thus, we roughly
approximate a background distribution and favor objects with un-
frequent features. In the presence of a pointing gesture, it is ben-
eficial to reflect that pointing gestures narrow the spatial domain
in which the target object can be expected. Consequently, we fo-
cus the calculation of the distractor feature distribution p(6||Dr)
on the spatial region that was indicated by the pointing gesture. o2
Therefore, we calculate a weight map — similarly to the pointing
saliency map St (Eq. 9) but with an increased variance o2 — to
weight the histogram entries when calculating the feature distribu-
tion p(0|| Dr). However, since in both cases the target object is also
a part of the considered spatial domain, the resulting feature mod-
els have to be smoothed in order to avoid suppressing useful target
features during the modulation.

4.2 Top-Down Pointing Saliency

Given the pointing origin 6, direction d, and estimated accuracies
&3, &f, and 03 (see Sec. 3.2), we calculate a combined inaccuracy
o2 according to

ol =max {6 +65+05, (3°)°} . 7

We set the lower bound of o > 3° in order to reflect the findings in
[26]. Accordingly, 99.7% of the defined probability mass covers at
least a corridor of 9°.

We apply this probability distribution to define our probabilistic
model of the pointing cone (cf. [26])

pa(B(x;6,d)) = N(0,07) (8)

where the transformation 3(z, 6, J) calculates the angle between
the vector from the pointing origin 6 to the point = and the pointing
direction d. Thus, pc represents the probability that point x in the
image plane was referred-to by the pointing gesture. We addition-
ally use the Logistic function sy, to attenuate the saliency around the
hand, because the origin often coincides with center of the pointing
hand, which would otherwise attract the attention. Accordingly, we
obtain the saliency map

S%(x506,d) = pc(B(z;6,d))sL(v(x; 6,d)) ©)

with a distance transformation + that scales and shifts the Logistic
function to reflect the expected size of the hand (see Fig. 2).

4.3 Focus of Attention Selection

We apply the Hadamard product to integrate the saliency maps
Sp and St in the presence of a pointing gesture, i.e.

g0 _ {(S B -Sr), if pointing is detected (10)

Se, otherwise .

Then, we determine the initial focus of attention (FoA) by selecting
the point p%,, with the maximum saliency. In order to realize the
iterative shift of the FoA, we apply an inhibition-of-return (IoR)
mechanism. Therefore, we model the FoA as circular region with
a fixed radius r (cf. e.g. [24]) and — similar to [41] — we inhibit the
attended image region after each iteration ¢ by subtracting a 2-D
Gaussian weight function G with amplitude 1, variance o1or and
center pi », i.e.

p%OA = argmaxSi 1)

St = maX{O,Si—G(p%‘oA7UIoR)} . (12)
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Figure 4: Representative object references in our evaluation
data set.

S. EXPERIMENTAL EVALUATION

5.1 Setup, Procedure and Measures

In the following, we evaluate how well multi-modal references
guide the attention in our model. Therefore, we collected a data set
which contains 242 multi-modal referring acts that were performed
by 5 persons referring-to a set of 28 objects in a meeting room (see
Fig. 4). This limited set of objects defines a shared context of ob-
jects that are plausible in the scene and can be addressed. We chose
the objects from a limited set of classes (books, cups, packages,
and office utensils) with similar intra-class attributes, i.e. size and
shape. Consequently, in many situations, object names and colors
are the most discriminant verbal cues for referring-to the referent.
We recorded the data set using a monocular camera (SONY EVI-
D70P) with a horizontal opening angle of 48° and roughly PAL
resolution (762 x 568 px). In order to reflect a human point of view,
we mounted the camera at the eye height of an averagely tall hu-
man. We transcribed the occurring linguistic references manually
to avoid the influence of speech recognition errors. We acquired
the necessary color term models and object data base as described
in Sec. 4.1.1 and 4.1.2. On average 2.46 model views per object
are included in the data base.

With the intention to obtain a challenging data set, we allowed
the participants at every moment to freely change their own posi-
tion as well as select and arrange the objects that are visible in the
scene (see Fig. 4). Furthermore, after explaining that our goal is to
identify the referent, we even encouraged them to create complex
situations. However, naturally the limited field of view of the cam-
era limits the spatial domain, because we did not allow references to
objects outside the field of view. Furthermore, we asked the partici-
pants to point with their arms extruded, because we use the line-of-
sight to estimate pointing direction (cf. [39, 1]) and do not evaluate
different methods to determine the pointing direction (cf. [35]). In
order to verbally refer to an object, the participants were allowed to
use arbitrary sentences. But, since the participants often addressed
the object directly, in some cases only a noun phrase was used in
order to verbally specity the referent.

In order to measure the influence of the available information
on the visual search, we calculate the expected number of atten-
tional shifts £ that are necessary to focus the referent. Addition-
ally, we calculate the amount of referents D that were focused in
the first selected focus of attention (FoA). We consider a target as
detected when the FoA intersects the target object (cf. [24]). There-
fore, we outlined the visible area of the referred-to object in each
image of the data set. Furthermore, we annotated the dominant eye,
the pointing finger, and the resulting direction. Accordingly, we are
able to assess the quality of the automatically recognized pointing

Annotated Automatic
Modalities D E S D E S
None - - -l 9.9 23.53| 32.15
Lg. - - -l 16.5| 16.67| 26.36
Pt. 51.2| 1.074| 1.62|| 46.3| 2.46| 6.14

Lg. &Pt. || 59.9| 0.79| 1.43|| 54.1| 1.91| 4.97
Lg.* - - -l 15.7] 16.17| 26.58
Lg* & Pt.|| 63.2| 0.77| 1.38|| 50.0| 1.74| 3.62

Table 1: Evaluation results with/without the integration of lan-
guage processing (Lg.) and pointing (Pt.) in the presented com-
posite saliency model: percentage of objects D that were fo-
cused in the initial FoA (in %); expected number of shifts <
until the referent is focused and the corresponding standard
deviation S. The results for pointing were calculated with the
automatically determined pointing direction and, in order to
serve as reference, with a manually corrected pointing direc-
tion. Furthermore, we present the results for language without
the negative influence of incorrect, automatically determined
linguistic references (Lg.*).

gesture and its influence on the detection of the referent. Addition-
ally, for each linguistic reference, we annotated the attributes, tar-
get object, and whether the specific target object can be recognized
without the visual context of the complementary pointing gesture
(e.g. “the cup” vs. “the X-mas elk cup”).

The evaluation results were acquired with the following, most
important parameters: we used the hue, saturation, lightness, and
orientation as feature dimensions. Every feature dimension had a
sparse population of 8 neurons and was subdivided into 32 bins.
Furthermore, the SNR exponent o was set to 2.

5.2 Results and Discussion

We performed the pointing gesture detection at half image reso-
lution of 381 x 284 px, in order to facilitate real-time responsive-
ness. On average the differences between the annotated and au-
tomatically determined pointing origin and direction are 12.50 px
and 2.80°, respectively. The former is mostly caused by the fact
that the system detects the center of the hand, instead of the fin-
ger. The latter is due to the fact that the eye positions are estimated
given the head-shoulder detection, and that the bias introduced by
the dominant eye is unaccounted for (cf. [2]).

Consequently, when relying on the automatically determined point-
ing information, the amount of necessary FoA shifts to focus the
referent E and the corresponding standard deviation S are nearly
doubled compared to the results obtained with the annotated in-
formation (see Tab. 1). On average, the referent is focused af-
ter 1.07 and 2.46 shifts of attention (with radius » = 10 px and
Olor = +/7). Furthermore, 51.2% and 46.3% of the referents are
located inside the initial FoA and thus directly detected. These re-
sults are an interesting aspect for machine learning when the task is
to couple verbal descriptions with the visual appearance of before-
hand unseen or unknown objects.

Incorporating linguistic information and modulating the visual
saliency with the target feature models improves the visual search
speed (see Tab. 1). On average, the referent is focused after 16.17
shifts of attention, compared to 23.53 without saliency modulation.
However, the achieved improvement is considerably weaker com-
pared to the effect of pointing gestures. This can be explained with
the drastically reduced spatial search space indicated by pointing
gestures (see Fig. 4), the presence of situations in which the tar-
get is located among distractors with similar features (e.g. Fig. 4,



top-right corner, addressed was “the physics book™, i.e. the or-
ange book at the image bottom), the weak modulation obtained
with color term models (cf. Fig. 3), and the effect of errors in the
detection of linguistic references. Our language processing cor-
rectly detected 123 of 123 color references and 123 of 143 ref-
erences to specific objects (e.g., as negative example: “the tasty
Hobbits™ as reference to the “the Hobbits cookies package” was
not detected; for comparison, as non-trivial positive matching sam-
ples, “valensina juice bottle” and “ambient intelligence algorithms
book” have been matched to “valensina orange juice package” and
“algorithms in ambient intelligence book™ in the data base, respec-
tively). Most importantly, the specifier matching of object descrip-
tions made only one critical mismatch (“the statistical elements
book” has been matched to “the statistical learning book” instead
of “the elements of statistical learning book™). This is an important
aspect and the reason why we chose the cautious matching method
as described in Sec. 3.1, because wrong targets lead to highly inef-
ficient visual search paths. In consequence, the results only slightly
improve from 16.67 to 16.17 expected shifts of attention when the
manually annotated information is used.

The combination of both modalities leads to a further improve-
ment of the achieved results (see Tab. 1). On average 1.91 shifts
of the FoA are necessary to focus the target object when relying on
the automatical recognition of pointing gestures and verbal refer-
ences. Furthermore, more than every second object (54.1%) is di-
rectly selected in the initial FoA. Accordingly, these results indicate
that the presented approach facilitates efficient recognition of the
referred-to target object, because we can expect that only the area
around a very limited number FoA locations needs to be processed.
However, if the manually annotated information is used, the per-
formance improves substantially. Most importantly, the expected
number of FoA shifts reduces to 0.77 and, furthermore, 63.2% of
the referents are located inside the initial FoA. Although this in-
dicates that an important aspect of future work is to improve the
calculated pointing direction, e.g. by using stereo vision and eye
detection, it even more demonstrates the quality and applicability
of the presented approach independent of the applied pointing ges-
ture recognition.

6. CONCLUSION

We developed a biologically-inspired attention model that com-
bines pointing gestures with stimulus- and goal-driven attention. In
this contribution, we presented how multi-modal referring acts can
guide the attention in order to speed-up the detection of referred-
to objects. Interestingly for future applications is the fact, that we
guide the attention with the same models that can be applied for
recognition and naming of target objects. We demonstrated the ap-
plicability of the proposed approach through experimental evalua-
tion on a challenging data set. Consequently, we plan to use the
system as a consistent saliency-based foundation for scene explo-
ration, efficient scene analysis, and natural human-robot interac-
tion. Naturally, we plan to integrate stereo vision in the future, be-
cause we expect that the additional depth information will further
improve the results. Furthermore, we intent to employ our model in
a multi-modal conversation system in order to facilitate achieving
a joint focus of attention in human-robot interaction.
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