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Abstract— In recent years, natural verbal and non-verbal
human-robot interaction has attracted an increasing interest.
Therefore, models for robustly detecting and describing vi-
sual attributes of objects such as, e.g., colors are of great
importance. However, in order to learn robust models of
visual attributes, large data sets are required. Based on the
idea to overcome the shortage of annotated training data by
acquiring images from the Internet, we propose a method
for robustly learning natural color models. Its novel aspects
with respect to prior art are: firstly, a randomized HSL
transformation that reflects the slight variations and noise
of colors observed in real-world imaging sensors; secondly,
a probabilistic ranking and selection of the training samples,
which removes a considerable amount of outliers from the
training data. These two techniques allow us to estimate robust
color models that better resemble the variances seen in real-
world images. The advantages of the proposed method over
the current state-of-the-art technique using the training data
without proper transformation and selection are confirmed in
experimental evaluations. In combination, for models learned
with pLSA-bg and HSL, the proposed techniques reduce the
amount of mislabeled objects by 19.87 % on the well-known
E-Bay data set.

Keywords-Web–based/Internet–based learning, natural im-
ages, color, color terms, color naming, probabilistic HSL model,
human–machine/human–robot interaction

I. INTRODUCTION

An important aspect of human-human and human-robot
interaction (HRI) is the goal to establish mutual agreement
about the association between communicated concepts and
their physical correlates in the real world (cf. [1]). Usually,
such relations are established by combining deictic refer-
ences in natural language with non-verbal cues, such as
gestures or gaze. In this combination gaze and gesture are
mainly used to communicate spatial relations, and verbal
descriptions complement these by specifying attributes or
categories of intended reference objects. The latter are
mandatory, if non-verbal cues alone – e.g., pointing –
are not sufficient to correctly identify the intended object.
Consequently, multi-modal HRI systems need to be able to
robustly recognize and describe object properties in order to
resolve potential ambiguities.

Models for visual attributes can in principle be learned
from sample data (cf., e.g., [2]). However, classical super-
vised learning techniques require the training data to be cor-
rectly annotated. This requirement is especially problematic
in dynamic environments considered in HRI. There, training
data labelled by experts usually is available in extremely
limited quantities only. In order to resolve this problem, there
exist two fundamental possibilities for acquiring annotated
data. Firstly, it can be generated interactively by prompting
the user. Though the quality of labelled data that can be
obtained in such a manner is rather high, such a process
is difficult to realize, time consuming, and able to generate
rather limited sample sets only. Secondly, as pioneered by
Fergus et al. [3], the Internet can be used as a source of
weakly labelled data by making use of publicly available
search engines. This process allows relatively fast access to
a huge amount of labelled data, for which, however, the
annotations are not completely reliable.

In this contribution we propose a method for learning
robust color models based on images acquired from the
Internet. The method was inspired by Weijer et al. [4], [5],
who try to achieve robustness in color naming by using
larger amounts of real-wold images, i.e. the ones retrieved
from the Internet. However, data sets composed of images
obtained via Internet search engines suffer from at least two
deficiencies. First, the images are often heavily quantized as
a consequence of image compression or even completely ar-
tificial (cf. Fig. 4). Consequently, color distributions learned
from such data perform poorly when applied to the classifi-
cation of real, noisy image data. Therefore, we propose the
use of a probabilistic HSL color model in order to generate
more realistic variance in the training data and, consequently,
obtain color models with better generalization capabilities.
Secondly, image sets retrieved for some specific object color
may contain anything ranging from oversimplified images to
hardly matching ones and even completely “false positives”.
Training with such noisily labelled data necessarily has
a negative affect on the quality of the statistical color
model obtained. Therefore, we propose to perform a pre-
selection of training images based on a simple initial model



and an estimate of the labels’ correctness derived from
the χ2 distance between the initial color and background
distributions.

The rest of this paper is organized as follows: We briefly
overview the related work in the following Section II. In Sec-
tion III and IV, we present our randomized HSL color space
and explain how the color terms are learned, respectively.
Subsequently, in Section V, we present the relevant data
sets and discuss our evaluation results. Finally, we conclude
with a brief summary and outlook in Section VI.

II. RELATED WORK

Learning object categories (e.g. [3]) and visual attributes
(e.g. [2], [4]–[6]) with data acquired from the Internet
has attracted an increasing interest in recent years. While
[6] investigates the general “visualness” of labels assigned
to images, [2] and [4], [5] focus on specific attributes,
i.e. texture or color, respectively. Most closely related
to our contribution is the work by Weijer et al. [4], [5]
that focuses on learning to assign color names to pixels
and retrieve images with specific colors. Interpreting the
color histogram bands as “words” of an image and the
color terms as “topics”, document analysis methods can be
applied in order to learn the association between images and
color names. Accordingly, in [4], [5] modifications of the
probabilistic latent semantic analysis [7] are used in order
to learn the color histogram distributions of the 11 English
basic color terms (cf. [8]–[11]). The cross-cultural concept
of basic color terms states that there exist psychophysical
and neurophysical determinants that lead to a limited set of
basic color terms in each language of which all other colors
are considered to be variants (e.g. the 11 basic color terms
for English are: “black,” “white,” “red,” “green,” “yellow,”
“blue,” “brown,” “orange,” “pink,” “purple,” and “gray”).

When working with color information on digital comput-
ers, the choice of an appropriate color space is of utmost
importance and should be tightly coupled to the goal of
the application (cf. [12]). Accordingly, there exists a wide
range of established color models. For example, RGB is
a device-dependent additive color space, which is often
transformed into the cylindrical Hue-Saturation-Lightness
(HSL) or Hue-Saturation-Value (HSV) space in order to
increase intuitivity and approximate perceptual color spaces
(cf. [11]). Perceptual color spaces incorporate considerations
how humans perceive colors. For example, L*a*b* (also
known as CIELAB) tries to normalize the perceptual dis-
tance between colors and approximate perceptual uniformity
(cf. [12]), i.e. the property that equal differences of colors
in the color space should produce equally important color
changes in human perception. Extending that approach, color
appearance models (e.g. CIECAM02 (cf. [12])) additionally
apply chromatic adaptation transformations (e.g. CIECAT02
in CIECAM02) that further model the influence of the
viewing conditions and surround. This is also related to

Figure 1. Images and their HS (green) and pHS (red) marginal distri-
butions. L: image; C: hue; R: saturation (with exemplary randomization
parameters ps = pb = 3). Top: artificial image shows unnatural peaks
at zero hue (i.e. “red”) and saturation in the corresponding channels,
which are smoothed when applying the probabilistic model. Bottom: for
comparison, the smooth hue channel is only slightly affected for the natural
image. However, due to the high percentage of nearly black pixels and
chosen randomization parameters, the saturation distribution is notiecably
influenced (please note that this is an extreme example), but without
affecting the perceived visual quality.

color constancy methods which try to model the human
ability to perceive the color of objects relatively constant
under varying illumination conditions. In [4], [5], instead of
applying color appearance or constancy methods, the huge
illumination, viewing, and composition variances of images
acquired from the Internet are assumed to produce robust
color term models. Furthermore, the L*a*b* color space is
favored for learning and naming color terms, mainly due to
its perceptual properties and the better performance of the
learnt model for image retrieval when compared to RGB
and HSL. Interestingly, in [10] the equidistant perceptual
similarity metric for Lab is critically discussed for color
naming and HSL is favored.

In order to model color noise and boundaries in images,
probabilistic parametric models of color distributions have
previously been applied in the area of color-based image
segmentation (e.g. [12]–[14]). Most closely related to our
probabilistic HSL model is the probabilistic HSV model in
[13]. The distribution of the hue and saturation are assumed
to be independent. Accordingly, the joint distribution can be
modeled by a von-Mises and a Gaussian distribution while
keeping the value fixed.

III. PROBABILISTIC COLOR MODEL

A large amount of images acquired from public image
search engines is synthetic, artificial, or highly processed
(cf. Fig. 4). Since the color distributions of such composed
images are heavily quantized or distorted, they exhibit
different probability distributions compared to real-world
images that are acquired with imaging sensors (cf. Fig. 1). In
contrast, natural images always have slight color variations
and noise, leading to a smoother distribution of colors in the
image. Therefore, when training a color model on Internet
image data and aiming at its application in real-world



Figure 2. Example of the influence of the randomization parameters pb and ps. Left-to-right: original image, image randomized with pss = pb = 0,
pss = pb = 1, and pss = pb = 4. As can be seen, increasing the parameters pb and ps improves the perceptual quality up to the point that no visual
difference can be perceived.

settings, this results in a mismatch between the statistical
characteristics of training and test data. Therefore, we intro-
duce a probabilistic color model and a transformation that
approaches natural color distributions for artificial images.

A. Model

We define our probabilistic Hue-Saturation-Lightness
(pHSL) color model based on the common deterministic
HSL model. Our model reflects that the measured hue and
saturation get less reliable, the more the color approaches
achromaticity (cf. Fig. 1). As it can be assumed that the
lightness l becomes more reliable instead, we do not model
it as a random variable. Consequently, we define it as equal
to the deterministically determined lightness ld = l.

We model the distribution of the natural hue h with a
von-Mises distribution

fVM(x;µ, κ) =
1

2πI0(κ)
eκ cos(x−µ)

∣∣∣∣
µ=hd

, (1)

where µ is set to the deterministic hue hd and I0(κ) is
the modified Bessel function of order 0. The concentration
parameter κ is an inverse measure of the dispersion, i.e. κ−1

is analogous to the variance σ2.
Similarly, the natural distribution of the saturation s is

modeled using a truncated normal distribution

fT N (x;µ, σ, a, b) =
1
σfN (x−µσ )

FN ( b−µσ )− FN (a−µσ )

∣∣∣∣∣µ=sd
a=0
b=1

. (2)

fN is the probability density function of the standard normal
distribution and FN its cumulative distribution function.
The distribution is concentrated around the deterministic
saturation sd = µ within the interval from a = 0 to b = 1.

In this model, κ and σ control the concentration of the
probability distribution of the hue and saturation, respec-
tively, when given the observed values. In the extreme case,
when κ → ∞ and σ → 0, the distributions approach a
Dirac distribution and converge against the observed values.
Furthermore, if κ → 0 and σ → ∞, the distributions
approach the uniform distribution, which is, e.g., suitable to
model the distribution of the hue for (nearly) monochrome
colors.

B. Randomized HSL Transform

When given an image with deterministically determined
HSL values, we randomly draw the pHSL values from the
distributions as defined above. Critical for this process are
the choices of κ and σ, because they define the perceptual
quality of the randomized image (see Fig. 2). At this point
we have to consider two conflicting criteria: firstly, we do
not want to change the visual perception of the randomized
image compared to the original image, and, secondly, we
want to maximize the entropy of the hue and saturation
distributions. In this contribution, we calculate κ according
to

κ = (1− s)−ps(1− b)−pb − 1 , (3)

where b = 2min (l, 1− l) ∈ [0, 1] is the normalization term
of the chroma when calculating the saturation in the HSL
model1 and serves as a lightness-dependent indicator of the
colorfulness. Accordingly, the exponents ps and pb control
the degree of randomization of the hue. Exploiting that the
von-Mises distribution approaches a normal distribution for
large concentrations κ, we can now calculate σ according to

σ = κ−1/2 . (4)

Consequently, the only parameters controlling the degree of
randomization are the exponents pb and ps. They depend
on the lightness and saturation, respectively, and have to be
chosen depending on the desired degree of randomization,
i.e. entropy, versus the expected perceptual quality of the
randomized image.

IV. LEARNING COLOR TERMS

Computational color representations always need to be
defined with respect to some color space. However, in order
to be used for human-machine interaction, they also need
to be related to a linguistic concept of color that can be
communicated verbally. This accounts for the fact that “color
spaces allow us to specify or describe colors in unambiguous
manner, yet in everyday life we mainly identify colors by
their names. Although this requires a fairly general color
vocabulary and is far from being precise, identifying a color

1lightness: l = 1
2
(max (r, g, b) + min (r, g, b)), chroma: c =

max (r, g, b)−min (r, g, b), saturation: s = c
2 min(l,1−l)



Figure 3. Characteristic ranked χ2-distance-ratio Rzd
χ2 curves for 128

(left) and 512 (right) images.

by its name is a method of communication that everyone
understands” [10].

A. Learning Color Models

Analogue to discovering latent topics in bag-of-word
models in text analysis, we try to find color terms Z =
{z1, ..., zK} in a bag-of-pixel representation, i.e. a color
histogram. Accordingly, images and image regions D =
{d1, ..., dN} are represented by histograms whose bins are
interpreted as words W = {w1, .., wM}. Furthermore, each
image d is weakly labelled with its topic ld = t.

1) pLSA-BG: In the probabilistic Latent Semantic Anal-
ysis (pLSA) model [7], the probability of a word w in
an image d is P (w|d) =

∑
z∈Z P (w|z)P (z|d). pLSA-bg

extends this model by introducing a latent background color
distribution P (w|bg), which is shared between all images.
Consequently, the probability of a word w in an image d
which is labeled with the latent topic z is described as a
weighted mixture of the foreground distribution – i.e. the
model for color z and a shared background distribution as

P (w|d, ld = z) = αdP (w|ld = z) + (1− αd)P (w|bg).

The parameters of this model, namely the color-specific dis-
tributions P (w|z), the global background model P (w|bg),
and the document-specific foreground probabilities αd, can
be estimated using the EM algorithm as shown in [4].

2) χ2 Ranking: As alternative to pLSA-bg and as method
to calculate an initial model for the EM-algorithm of
pLSA-bg, we apply a ranking procedure. Therefore, we use
the mean probabilities P ′(w|z) = 1

N

∑
d∈D,ld=z P (w|d)

as initial models. Using these models, we calculate the χ2

distances dzdχ2 between the initial models P ′(·|z) and images
P (·|d)

dzdχ2(P ′(·|z), P (·|d)) =
∑
w∈W

(P (w|d)−m)2

m
(5)

with

m =
P ′(w|z) + P (w|d)

2
. (6)

The χ2 distances asymptotically approach the χ2 distribu-
tion and measure how unlikely it is that one distribution

was drawn from the population represented by the other
(cf. [15]). By ranking the images according to their χ2

distance ratios Rzdχ2

Rzdχ2 =
dzdχ2

minz′ 6=z dz
′d
χ2

, (7)

we obtain the characteristic curves as depicted in Fig. 3.
We observed these characteristic curves for multiple color
models, independently of the number of considered images.
By selecting the images D′ ranked along the central linear
segment of the curve (cf. Fig. 3), we estimate the models
according to

P (w|z) =
1
N

∑
d∈D′,ld=z

P (w|d) . (8)

This selection criterion reflects that the initial model is
degraded by the huge amount of background and outliers.
Consequently, a considerable amount of images with a huge
percentage of background is located in the head of the
curve and omitting these samples, at least initially, may
improve the results. Furthermore, complete outliers still
differ substantially from the initial model and are located
in the tail. Thus, most of the samples in the tail can be
discarded.

B. Assigning Color Terms

In order to assign a color term z ∈ Z to an image or
image region d, we first calculate the posterior probabilities
P (ld = z|w) ∝ P (w|ld = z)P (ld = z) for each word
w ∈ d. Using these posteriors, we assign each region to the
term with the highest likelihood

ld = arg max
t

∏
w∈d

P (w|ld = z) , (9)

assuming a uniform color name prior P (ld = z).

V. EVALUATION

A. Data Sets

For the training of our model, we used the Google image
search to collect a data set of 512 images (GOOGLE-512)
for each of the 11 basic color terms (see Fig. 4). As in
[5], we queried for "$colorname+color". But, in contrast to
the GOOGLE-250 data set in [5], we did not apply any
preprocessing methods to the images. For the evaluation,
we are using the E-BAY data set that is publicly available
and has been applied in [4] and [5]. The data set consists of
segmented images of 4 object classes (cars, glass & pottery,
shoes, and dresses) with 10 evaluation images for each of
the 11 basic color terms (see Fig. 4).



Black Grey White Red Green Blue Yellow Orange Pink Purple Brown

Figure 4. Example images from the training and evaluation data sets for each color term. Rows 1-3: 1st, 111th and 256th image of the GOOGLE-512
data set. Last row: E-BAY data set examples.

Method Space Cars Shoes Dresses Pottery Total

Randomized
χ2 rank HSL 73.63 92.73 88.18 79.01 83.41

pLSA-bg HSL 69.18 87.36 87.36 77.36 81.32

Deterministic
χ2 rank HSL 68.18 91.81 87.27 76.36 80.90

pLSA-bg HSL 66.36 90.00 85.45 73.63 79.31

Reference
Weijer et al. L*a*b* 71.82 92.73 86.36 83.64 83.64

Human Brain 92.73 90.18 91.99 87.82 90.64

Table I
PERCENTAGE OF CORRECTLY LABELLED OBJECTS OF THE E-BAY DATA SET. THE RANDOMIZATION ACCORDING TO THE PROBABILISTIC MODEL AS

WELL AS THE χ2 RANKING SIGNIFICANTLY IMPROVE THE RECOGNITION RATE. IN COMBINATION THE PROPOSED TECHNIQUES INCREASE THE
RECOGNITION RATE BY 4.1% UP TO 83.41%, I.E. A 19.87% DECREASE OF MISLABELED OBJECTS. FOR COMPARISON, HUMAN OBSERVERS ASSIGN

THE ANNOTATED LABEL TO 90.64% OF THE SAMPLES.

B. Results

In the following we present our results in assigning the
correct color term to the objects in the E-BAY data set
(see Fig. I). In order to provide comparative figures, we
trained a non-probabilistic HSL model with pLSA-bg and χ2

ranking. Additionally, as a baseline, we compare our results
with the pLSA-bg model presented by Weijer et al. in [4]
(cf. Tab. I), which is publicly available. This model uses the
L*a*b* color space, divided into 10×20×20 histogram bins.
Furthermore, reflecting that borders between color terms are
fuzzy (cf. [9], [10]), we performed a user study in order to
assess the practically achievable recognition rate on the E-
BAY data set (cf. Tab. I). Therefore, we asked 5 participants
to assign one of the 11 English basic color terms to each
of the 440 test images in the data set. The images were
displayed on a monitor upon grey background (w/o any
focal, prototypic colors that could serve the annotator as
orientation) in an environment with controlled illumination.
Please note that we did not indicate the segmentation masks
to the participants. However, this only influences the small
amount of ambiguous samples (approx. 1% of the data set).

In this contribution, we refer to the following parametriza-
tion: pb = 6 and ps = 4 are used as randomization
exponents of the κ-function (Eq. 1). The HSL color space is
divided into 32× 8× 8 histogram bins. Furthermore, when
χ2 ranking is applied, the images are ranked with the χ2

metric ratios (Eq. 7) and the images within the rank interval
[0.275N ; 0.9N ] are selected.

As it can clearly be seen in Tab. I, the randomization as
well as the χ2 ranking improved the recognition rates of the
learned model. The combination of probabilistic resampling
and χ2 ranking improved the recognition rate by 4.1 % up
to a total rate of 83.41 %. This result is comparable to
the 83.64 % of the model by Weijer et al. (see Tab. I),
which was learned using pLSA-bg with L*a*b as color space
(see Sec. V-A). However, it has to be considered that – in
contrast to the model by Weijer et al. – we did not apply
any preprocessing steps such as, e.g., removing the image
borders and thus performing a foreground segmentation [5,
Sec. 2]. Furthermore, the model by Weijer et al. has twice
the number of histogram bins. Interestingly, increasing the
number of bins of our model did not improve the results.



Although both computational models perform well, they
still do not match the human performance of 90.64 %.
Interestingly, the human performance is relatively constant
across the object classes, which stands in contrast to the
performance drop of the computational models for the “cars”
test subset. This discrepancy can be explained with the
color distortions resulting from the typically glossy car
surfaces. Thus, we suspect that these samples require color
constancy, adaptation, and/or context models in order to
achieve human performance. Consequently, if we exclude
the “cars” subset, we can achieve 86.64 % correctly labelled
images which comes close to the corresponding 90.00 %
human performance.

Finally, we can assess the similarity between the labels
assigned by humans and the learned models. Therefore,
lacking a biologically-plausible similarity measure, we use
the distance between the confusion matrices of the human
observers and the learned model (cf. [16]). The model by
Weijer et al. has a distance of 0.73 whereas our model has
a distance of 0.57. Accordingly, this indicates that the color
labeling behavior with our model is closer to the labeling
behavior of humans and thus appears slightly more natural
in practical applications.

VI. CONCLUSION

In this contribution, we presented a method for robustly
learning color models with data acquired through Internet
image search engines. In contrast to previous approaches,
we use a probabilistic HSL model in combination with a
randomized HSL transform, in order to avoid degenerate
color distributions due to quantization effects observed in
the input data. In addition, a ranking of the training samples
based on a rather simple initial model is used to focus
parameter estimation on reliable examples. The effectiveness
of these two techniques for improving the quality of the color
models obtained was confirmed in experimental evaluations.
Furthermore, the color term models have successfully been
applied in [17]. In the future, we plan to develop a prob-
abilistic L*a*b model and study the sensitivity of human
observers for slight color noise and variations in order to
derive optimal randomization parameters.
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