
UNIVERSITÄT KARLSRUHE (TH)
FAKULTÄT FÜR INFORMATIK

INTERACTIVE SYSTEMS LABS
Prof. Dr. A. Waibel

DIPLOMA THESIS

Automatic identification
of persons in TV series

SUBMITTED BY

Mika Fischer

MAY 2008

ADVISORS

M.Sc. Hazım Kemal Ekenel
Dr.-Ing. Rainer Stiefelhagen

Interactive Systems Labs
Institut für Theoretische Informatik
Universität Karlsruhe (TH)
Title: Automatic identification of persons in TV series
Author: Mika Fischer

Mika Fischer
Kronprinzenstr. 62
76177 Pforzheim
email: mika.fischer@ira.uka.de

Statement of authorship
I hereby declare that this thesis is my own original work which I created without
illegitimate help by others, that I have not used any other sources or resources
than the ones indicated and that due acknowledgement is given where reference
is made to the work of others.

Karlsruhe, 30. May 2008 .
(Mika Fischer)

Abstract
In recent years, more and more video content in digital form is becoming avail-
able, for example through websites like YouTube. For effective search in these
large amounts of video data, content-based approaches are necessary. An im-
portant sub-task of search in videos is the search for specific persons.

The goal of this work is to develop a baseline system for person identification
in videos, more specifically in TV series. The system has to be built from the
ground up, starting with shot boundary detection, which segments the video
into separate shots and is an important first step for all work in the area of video
analysis.

Furthermore, persons have to be detected and tracked in the video. For this
purpose, a face tracker is developed, which is based on the particle filter ap-
proach and uses skin color segmentation and Haar cascade-based face detectors
as features. The Haar cascades are extended to supply confidence values, and
not only binary decisions, which has significant advantages for the tracking al-
gorithm.

From the extracted face images, features are extracted using a successful lo-
cal appearance-based approach, and three application scenarios are explored:
closed-set identification, automatic retrieval and interactive retrieval. Experi-
ments are performed with eye location-based alignment for the first two scenar-
ios and without alignment for the last scenario.

The system is evaluated using episodes of TV series on DVD, as well as a
standard evaluation for shot boundary detection. The shot boundary detector
achieves very good results for the TV series, as well as for the shorter shot transi-
tions in the standard evaluation. There is still room for improvement, especially
for longer shot transitions.

The face tracker is also shown to have good performance. It finds a large
percentage of the persons in a video and can successfully track them. It is also
demonstrated that the tracks are very reliable and that they switch persons only
very rarely.

The results of the application scenarios show the viability of the local ap-
pearance-based face recognition approach to the video retrieval domain and
also point to possible enahncements of the system, especially in the area of
alignment.

Kurzzusammenfassung
In den letzten Jahren wurden immer mehr Videodaten in digitaler Form verfüg-
bar, zum Beispiel durch Webseiten wie Youtube. Um diese enormen Datenmen-
gen effektiv durchsuchen zu können sind inhaltsbasierte Methoden notwendig.
Ein wichtiger Teilbereich der Videosuche ist die Suche nach Personen.

Das Ziel dieser Arbeit ist die Entwicklung eines Baseline-Systems zur Perso-
nenidentifikation in Videos, genauer gesagt in TV-Serien. Das System muss
von Grund auf entwickelt werden, angefangen mit der Detektion von Schnit-
ten in den Videos, um das Video in einzelne Abschnitte zu segmentieren, was
ein wichtiger erster Schritt für alle Arbeiten im Bereich der Videoanalyse ist.

Weiterhin müssen Personen in den Videos detektiert und verfolgt werden. Zu
diesem Zweck wird ein Gesichtstracker entwickelt, der auf dem Partikel-Filter-
Ansatz basiert und Gesichtsfarbensegmentierung und Haar-Kaskaden-basierte
Gesichtsdetektoren als Merkmale verwendet. Die Haar-Kaskaden werden er-
weitert, um neben der üblichen binären Entscheidungen auch Konfidenzen zu-
rückzuliefern, was im Tracking-Algorithmus enorme Vorteile bringt.

Aus den extrahierten Gesichtsbildern werden Merkmale mit Hilfe eines erfol-
greichen Ansatzes, der auf lokalen Ansichten basiert, extrahiert. Weiterhin wer-
den drei Anwendungsszenarios untersucht: Identifikation einer geschlossenen
Gruppe von Personen, automatische Suche, sowie interaktive Suche. Die Exper-
imente werden für die beiden ersten Szenarios mit Rektifizierung basierend auf
Augenpositionen, und für das letzte Szenario ohne Rektifizierung durchgeführt.

Das System wird mit Hilfe anotierter Episoden von TV-Serien auf DVD evalu-
iert. Zusätzlich wird die Schnittdetektion mit Hilfe eines Standard-Benchmarks
evaluiert. Der Schnittdetektor liefert sehr gute Resultate für die TV-Serien, sowie
die kürzeren Schnittübergänge in der Standardevaluation. Es gibt noch Spiel-
raum für Verbesserungen bei den längeren Übergängen.

Vom Gesichtstracker wird ebenfalls gezeigt, dass er gute Resultate erzielt. Er
findet einen hohen Prozentsatz der Personen in einem Video und kann sie erfol-
greich verfolgen. Es wird weiterhin gezeigt, dass die Trajektorien sehr verlässlich
sind und dass sie nur äußerst selten von einer Person zu einer anderen springen.

Die Resultate der Anwendungsszenarios zeigen die Anwendbarkeit des auf
lokalen Ansichten basierenden Ansatzes zur Gesichtserkennung auf das Szenario
der Suche in Videos und zeigen auch mögliche Ansätze zur Verbesserung des
Systems auf, insbesondere im Bereich der Rektifizierung.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Previous work . 5

1.2.1 Shot boundary detection 5
1.2.2 Video retrieval systems using person identification 5

1.3 System overview . 7

2 Basic principles 9
2.1 AdaBoost . 9
2.2 Haar-feature based object detectors 10

2.2.1 Haar-like features . 11
2.2.2 Integral Image . 11
2.2.3 Classifier Learning . 13
2.2.4 Classifier Cascades . 14

2.3 Particle filter . 15
2.3.1 Bayesian tracking . 15
2.3.2 Particle Filter . 17

2.4 Dimensionality reduction using DCT 19
2.5 Histogram backprojection . 21

3 Shot Boundary Detection 23
3.1 Types of shot boundaries . 23

3.1.1 Cuts . 23
3.1.2 Fades . 23
3.1.3 Dissolves . 24

3.2 Shot boundary detection module 24
3.2.1 Cut detector . 28
3.2.2 Fast dissolve detector . 30
3.2.3 Fade out / fade in detector 31
3.2.4 Dissolve detector . 32
3.2.5 Fusion module . 32

4 Face tracking 33
4.1 Particle filter parameters . 33

i

4.2 Features . 34
4.2.1 Color segmentation . 34
4.2.2 Confidence based Haar detectors 37

4.3 Observation model . 39
4.4 Initialization . 41
4.5 Detection of lost tracks . 41
4.6 Overlap handling . 41

5 Classification 43
5.1 Alignment . 43

5.1.1 Eye detection . 43
5.1.2 Experiments without alignment 44

5.2 Feature extraction . 44
5.3 Classification . 44

6 Experiments 47
6.1 Experimental data . 47
6.2 Recall / precision metric . 47
6.3 Shot boundary detection . 49
6.4 Face tracking . 50
6.5 Application scenarios . 58

6.5.1 Closed-set identification 58
6.5.2 Automatic retrieval . 60
6.5.3 Interactive retrieval . 61

7 Conclusion 65

8 Future Work 67

ii

List of Figures

1.1 Examples of difficult image data 4

2.1 AdaBoost algorithm . 10
2.2 Original Haar-like features used in [VJ01] 11
2.3 Additional Haar-like features introduced in [LKP03] 11
2.4 Rotated Haar-like features introduced in [LKP03] 12
2.5 Integral image . 13
2.6 Haar features used in first stage of face detector 14
2.7 Cascade structure . 14
2.8 Overview of the CONDENSATION algorithm [IB98a] 18
2.9 DCT basis functions for 8× 8 pixel images 20

3.1 Example of a FOI transition . 25
3.2 Example of a fast dissolve transition 26
3.3 Example of a (slow) dissolve transition 27

4.1 Examples of the data used to build the color model 35
4.2 Sample skin color segmentation results 38
4.3 Example of the confidence map generated by the face detectors . 40

5.1 Zig-zag scanning of DCT coefficients 45

6.1 Example frames from the video data 48
6.2 Cut precision and recall on the TRECVID 2007 data 53
6.3 Gradual frame precision and recall on the TRECVID 2007 data . . 54
6.4 Histogram of frame precision and recall of the face tracks 57
6.5 The six main characters from Coupling 59
6.6 Examples of misaligned images 59
6.7 Results of automatic retrieval . 61
6.8 Interactive selection of matching faces 62
6.9 Results of interactive retrieval . 63

iii

List of Tables

6.1 Results of shot boundary detection on TV series data 49
6.2 Descriptions of the ten runs submitted for TRECVID 2007 51
6.3 Total precision and recall on TRECVID 2007 data 51
6.4 Cut precision and recall on TRECVID 2007 data 52
6.5 Gradual precision and recall on TRECVID 2007 data 52
6.6 Gradual frame precision and recall on TRECVID 2007 data 53
6.7 Tracking results on labeled Coupling episode 56
6.8 Results of closed-set identification 60
6.9 Occurrences of the main characters in the training and testing sets 60

v

List of Abbreviations
AAM Active appearance model

DCT Discrete cosine transform

DFT Discrete Fourier transform

EHMM Embedded hidden Markov model

FOI Fade out / fade in shot boundary transition

FSM Finite state machine

GMM Gaussian mixture model

HSV Hue-saturation-value color space

i.i.d. independent and identically distributed

MOT Multiple object tracking

PCA Principal component analysis

PDF Probability density function

RGB Red-green-blue color space

SBD Shot boundary detection

SIFT Scale-invariant feature transform

SVM Support vector machine

WAFP Weighted average frame precision

WAFR Weighted average frame recall

vii

1 Introduction
The last few years have seen an unprecedented explosion in the amount of
video content that is readily available over the internet. Only on YouTube over
150,000 video clips are uploaded every single day. Additionally broadcasters
and other media companies possess a huge amount of video data in digital form.
Sometimes even older analog tapes are being digitalized, further enlarging the
dataset.

These huge amounts of video data, that are already in a form that can be con-
veniently processed, transmitted and presented by computers, call for effective
and efficient automatic methods to find interesting content, in order to increase
the usefulness of the data. However, in almost all cases today, search is per-
formed using textual context, like the title and description of the video, tags
that the users may attach to the content, or also social recommendation-based
systems. Searching videos by using the actual video data is still very much an
area of active research. To a smaller degree this is even true for images.

It is clear, however, that content-based approaches are needed because the
approaches in use now have obvious disadvantages that are significantly de-
creasing the usefulness of having large amounts of video data available.

For one, textual information can only help in finding videos, but it cannot be
used to structure the video or help the user find interesting parts of the video.
Also, user-provided tags might me misleading or even wrong. And in the worst
case, there might just be no textual data available for the video.

Some things that would help solve the problem of content-based search in
videos are: automatic structuring or segmentation of videos, automatic speech
recognition, object detection, concept detection, genre classification, person de-
tection and identification, etc.

In many cases, persons that are depicted in the videos are of special interest
to the users. Therefore it seems a worthwhile goal to enable users to search
video databases or even single videos for occurrences of specific persons. The
usefulness of finding videos that contain a specific person of interest is obvious.
But the case of searching for a person within a video is equally important, e.g.
for long videos with only a few scenes that contain the person of interest, or also
for automatic structuring of videos.

The Quaero project [Qua], a large franco-german research project, has as its
goal to enable research in the area of multimedia analysis, in order to build com-
mercial applications in this area. A large part of Quaero concerns the automatic

1

1 Introduction

analysis of videos, exactly for the use in video retrieval, as described above. A
part of this task is the identification of persons in images and videos. This work
presents an approach at building a baseline system that can segment the video
into shots, find and track people in the video as well as extract features that can
later be used for the retrieval of scenes where specific persons occur.

The rest of this work is structured as follows: in the rest of this chapter, the
motivations and goals of this work will be detailed, previous work will be dis-
cussed and an overview of the system will be given. In Chapter 2, the major
techniques that are used in this work will be introduced. In Chapters 3 and
4, the system components for shot boundary detection and tracking will be de-
scribed in detail. In Chapter 5, the classification component will be detailed. In
Chapter 6, the experimental results will be presented. Finally, conclusions and
ideas for future work will be given.

1.1 Motivation
The Interactive Systems Labs (ISL) are involved in the Quaero project in var-
ious tasks, among which there are several tasks related to video analysis, in
particular the task of identification of persons in videos. So the goal of ISL is
to develop a system that can perform fully automatic video-analysis, especially
person-identification. Since there are no systems that can perform this task at
ISL, yet, the goal of this work is to build a baseline system, that can perform
all the necessary steps to identify persons in videos. In particular, the following
tasks have to be successfully addressed by the system:

• Segmenting the video into shots

• Detecting and tracking persons in each shot

• Extracting features for each person, which can be used for

– Classification
– Automatic and semi-automatic retrieval

The first step, called shot boundary detection (SBD), is a necessary step for
every video analysis system, so this component is not only important for this
work, but also for possible future works in other areas of video analysis, like
genre classification, concept detection, etc. No work has been done at ISL in
this area, so this component has to be built from the ground up. Since the SBD
component will be used for multiple systems in the future, it is an important
design goal, that the architecture be extendible and maintainable.

2

1.1 Motivation

The second step, detecting and tracking faces in videos, has been approached
before at the ISL, but in very different scenarios. Either the system was de-
ployed at a fixed location and with a fixed view-angle [Sta06], or the system
was expecting implicit cooperation of the user, by interacting with him [ST07].
Other works in the area of tracking were mostly done in the area of 3D tracking
[NGSM05]. The problem posed for this work is much harder, since the data
contains a lot more variations than in the previous works. In particular, the fol-
lowing properties make this task especially challenging: Large variations of face
size and pose, changing illumination and background within shots and across
shots, as well as camera movement. Example frames showing the difficult con-
ditions can be seen in Figure 1.1.

Thus, many features that were used in these previous works are either un-
available (3D information, background segmentation), or are very difficult to
use with this type of data (motion, color segmentation). So it is not surprising
that the systems developed earlier did not work well on this data. Thus a large
part of this work is to develop a robust face tracker, that can find most of the
persons in a video and reliably track them through a shot, while keeping the
false detections minimal.

For the feature extraction step, a very successful approach has been developed
at ISL [ES05], so no effort has gone into developing new approaches to feature
extraction.

Extensive previous work has been done at the ISL on the topic of closed-set
and open-set identification, but this was not yet tested in a retrieval scenario. So
another goal of this work is to test the feasibility of our general face-recognition
methodology in this new scenario. To this end, three application scenarios are
explored in this work:

Closed-set identification In this scenario, only the main characters of an epi-
sode of a TV series are considered. A part of the episode will be used to
train a classifier, while the rest of the episode is used to test the classifier.

This scenario is useful, because it will allow the results to be compared
with previous work in closed-set identification scenarios.

Automatic retrieval In this scenario, all persons of the episode will be consid-
ered, and again a part of the episode will be used to build query sets for
the main characters, while the rest will be used as a database from which
images, that depict the queried person, have to be retrieved.

Interactive retrieval This scenario is similar to the scenario above, with the dif-
ference, that here it will be tried to work on all the extracted data, even
the part where facial feature localization and subsequently alignment fail
to work. Since this is much harder, it cannot yet be done fully automatic

3

1 Introduction

Figure 1.1: Examples of difficult image data

4

1.2 Previous work

and thus an interactive search application is created, so that the user can
assist in the retrieval process.

1.2 Previous work
In this section, previous work in the areas of this work is summarized. The
analysis is separated into shot boundary detection and video retrieval systems
using person identification.

1.2.1 Shot boundary detection
Shot boundary detection has been an area of research for a long time. In recent
years the TRECVID evaluation workshop has been a driving force in the research
on shot boundary detection. State of the art systems exist that reach precision
and recall rates above 90%. Examples of such systems include [LGZ+06] and
[YWX+05]. The different approaches are too numerous to summarize them all,
so only the system developed at AT&T [LGZ+06], which was one of the best
systems of the TRECVID 2006 evaluation workshop, is described shortly.

The system uses several detector, each for a specific type of shot boundary.
It has detectors for: cuts, short dissolves, fade ins, fade outs, dissolves and
wipes. The detectors are modeled as finite state machines (FSM), that perform
state transitions based on features extracted from the video. The amount of
features extracted is extensive and includes histogram- and edge-based features
for the current frame as well as histogram difference-based features for adja-
cent frames and frames that are 6 frames apart. Motion-based features are also
used, which are computed by matching edge-maps. FSMs are created for each
detector, that use either a model-based approach (for fades, short dissolves and
wipes), a thresholding approach (for cuts), or an SVM-based classifier (for dis-
solves and optionally for cuts) to detect the respective shot boundaries. The
results achieved by this system are very good, and approach 90% precision and
recall for the difficult TRECVID 2006 dataset.

1.2.2 Video retrieval systems using person identification
The three works that most closely resemble a system like the one envisioned for
this work, are described in some detail below.

In [SEZ05], the authors consider the task of person retrieval for movies. The
system first segments the video into shots and runs a frontal face-detector on
the whole video. The face detections are associated by using a general-purpose
region tracker that can track deforming objects, such as turning faces. The face
detections within each shot are then associated using a clustering approach that

5

1 Introduction

uses the number of region tracks connecting two face detections to determine,
whether they belong to the same person. On the detected faces, a constellation-
and appearance-based facial feature localizer is run that determines the position
of eyes, nose and mount. It does this by considering the constellation of the fea-
tures (e.g. the nose should be somewhere between the point between the eyes
and the mouth, etc.) and the appearances of the features, which are modeled as
a mixture of Gaussians in a PCA subspace for each feature. The facial features
are then used to perform an affine warp of the face images, that moves the fea-
tures into canonical locations. The feature extraction consists of applying the
SIFT [Low04] feature extraction algorithm on each facial feature location and
also on the point between the eyes. To represent face tracks compactly, the au-
thors perform vector quantization in feature space (separately for each feature)
and then assign each image to the closest representative vector. Multiple faces
are then represented as a histogram of representatives that got assigned to the
face images. This histogram is the final representation of the face tracks in this
work. For matching, the authors use the χ2 metric, which is commonly used
for histogram comparison. The authors report some example retrievals, which
exhibit partly good performance but partly only medium performance.

In [AZ05], the authors consider the same problem of person identification in
movies. In contrast to the work described above, they just use the results of the
face detector and don’t try to associate the faces with a tracker. They localize
facial features (eyes and mouth) using an SVM-based approach that uses image
patches and gradients as features. The facial features are then used to align the
image using an affine warp, so that the facial features are moved to canonical
positions. The authors then perform several preprocessing steps, including seg-
mentation of the image into face and background, band-pass filtering to reduce
illumination effects and an alignment refinement procedure. For matching, the
squared distance of the preprocessed images is used, but the pixels where the
probability for an occlusion is high, are ignored in the distance computation.
The occlusion probability is determined by building a statistical model of the
image differences for each pixel using a corpus of unoccluded images and then
checking each pixel against this model. For matching using multiple query im-
ages, the authors propose a method using subspace matching, where essentially,
for every query set, a PCA subspace that retains 95% of the variance of the set,
is constructed. Then the probe image is projected into this space and recon-
structed. Finally the reconstructed image is compared with the original image
using the same distance metric as for single images. The authors report very
good results on an episode of a TV series. Especially the background removal
seems to have a large effect on the system performance.

In [RBK07], the authors describe a semi-automatic approach for labeling of
persons in very large datasets. As a first step, a face detector is run on the
whole video. Then temporally close detections are associated using histograms

6

1.3 System overview

of the hair, face and torso, after which a tracker is employed to obtain more face
images around the detected ones. The tracker uses color models, again for the
head, hair and torso. The tracks are finally represented as a set of histograms for
the hair, face and torso, as well as eigenfaces-based representations of the face
images, that are clustered using k-means. Using these representations of the
tracks, the authors try to cluster temporally close tracks using a weighted sum
of the histogram differences (computed using the χ2 metric) and the smallest
differences of the cluster means for the face representation for the two tracks.
For labeling, the authors first manually labeled the clusters of tracks extracted
from one episode of the TV series Friends, after which the clustering approach
described above was applied across episodes, but with different weights. The
face and torso histograms are ignored across episodes because they have been
found not to be reliable in that case. A dataset consisting of 22 episodes of
Friends was used to test the approach and the authors report good results with
as little as two labeled episodes (70% precision and recall).

1.3 System overview
Since this work is concerned with offline-processing of video data, the system
components can be conveniently isolated from each other. Each component
saves its results to disk and later components read the results of previous com-
ponents to perform their respective tasks. This approach has the additional
advantage, that multiple calculations can be avoided.

The system has three main components: the shot boundary detection mod-
ule, the face tracker and the application component, which is different for each
application scenario.

The shot boundary detection module outputs a list of shot boundaries, or
equivalently a list of scenes with start and end frame numbers. This list is then
used by the face tracker, to analyze the shots separately. The results of the
tracker are similarly stored as a list of tracks, with start and end frame and the
face position and size for each frame, as well as some pose information.

The three application modules then extract features from the face tracks and
use those features for their tasks: closed-set identification, automatic retrieval
and interactive retrieval.

7

2 Basic principles
This chapter describes several techniques that are used in this thesis as they
appear in the literature. Deviations from the standard form of the algorithms as
well as implementation details are described in later chapters.

2.1 AdaBoost
Boosting is a well known method of improving the accuracy of any given classi-
fication algorithm. The basic principle is to use many weak classifiers, that only
have to be slightly better than chance, and advantageously combine them to
form an ensemble classifier, that has a high accuracy [DHS00].

There are several variants of boosting algorithms, the most popular being
AdaBoost [FS97]. In AdaBoost, weak classifiers are iteratively added to the en-
semble classifier until some condition is satisfied, for example the training error
falls below a threshold or a predefined number of iterations has been reached.
The main idea of AdaBoost is to assign weights to the training samples, which
determine the probability of the sample being used to train the next weak clas-
sifier. Depending on the current classification of a training sample, its weight
is increased if it is incorrectly classified and decreased otherwise. This way, the
AdaBoost algorithm is focusing on the difficult training samples.

The AdaBoost algorithm is shown in Figure 2.1. It takes as input a training
set, consisting of samples xi and labels yi, in the binary classification case +1
or −1, as well as the number of iterations that the algorithm should run, kmax.
The training samples are first weighted equally with 1/n. Then a weak classifier
is trained on a random sample drawn from the training set according to the
weights Wk(i) and the training error rate Ek is measured on the same random
sample. The training error rate is used to assign a weight αk to the trained weak
classifier. This weight increases the influence of classifiers with low training
error rates, and decreases the influence of those that have a training error rate
close to 0.5. If a classifier has an error rate greater than 0.5, its weight gets
negative, effectively reversing its decision so that the error rate is 1 − Ek and
thus smaller than 0.5. In the next step, the weights of all training samples are
updated, depending on whether they are classified correctly or incorrectly by
the weak classifier. The weights of correctly classified training samples decrease,
while the weights of incorrectly classified samples increase. The final result of

9

2 Basic principles

input : D = {(x1, y1), . . . , (xn, yn)} ⊆ X × {+1,−1}, kmax ∈ N
output: H : X → {+1,−1}
begin1

Initialize W1(i) = 1
n

2

for k ← 1 to kmax do3

get weak hypothesis hk by training weak classifier Ck using D4

sampled according to Wk(i)
Ek ← training error rate of Ck measured on D using Wk(i)5

αk ← 1
2 ln

(
1−Ek
Ek

)
6

Wk+1(i)← Wk(i)
Zk
×
{
e−αk if hk(xi) = yi (correctly classified)
eαk if hk(xi) 6= yi (incorrectly classified)7

end8

return H(x) = sign
(∑kmax

k=1 αtht(x)
)

9

end10

Figure 2.1: AdaBoost algorithm

the algorithm is the hypothesis H, that is the sign of the weighted sum of the
weak hypotheses hi.

It can be shown that the training error drops exponentially fast in AdaBoost.
It has also been shown that AdaBoost aggressively enlarges the margins of the
training set examples, where the margin is defined as

m(xi) = yi
∑
k αkhk(xi)∑
k αk

yi ∈ {+1,−1} (2.1)

The margin can be interpreted as a confidence in the prediction. Also, large
margins are related to low generalization errors, which explains that AdaBoost
is quite robust against overfitting. An important conclusion of this is, that it is of-
ten beneficial to keep adding weak classifiers even if the training error is already
zero, because AdaBoost tries to maximize the margin, leading to lower general-
ization error. Of course, if the number of weak classifiers gets excessively large
compared to the size of the training set, even AdaBoost suffers from overfit-
ting, however this happens much later than it does for other learning algorithms
[FS99].

2.2 Haar-feature based object detectors
In [VJ01] the authors describe a general purpose object detection system that
can reach very high detection rates while keeping the computational effort com-

10

2.2 Haar-feature based object detectors

(a) (b) (c) (d) (e)

Figure 2.2: Original Haar-like features used in [VJ01]

(a) (b) (c)

Figure 2.3: Additional Haar-like features introduced in [LKP03]

paratively low, so that detection can be performed faster than real-time.
These so called Haar-cascades have been very successfully employed for sev-

eral object-detection problems, an important problem of which is face detection.

2.2.1 Haar-like features
Viola and Jones’ system uses so called Haar-like features as the basis for classifi-
cation. These features are differences between the sums of the image intensities
in adjacent rectangular areas of the image. More specifically they use three dif-
ferent types of features, which can be seen in Figure 2.2. These features can be
thought of as simple detectors for horizontal and vertical edges, horizontal and
vertical lines, as well as diagonal lines.

Later, Lienhart et al. extended the feature set to also include features that are
rotated by 45◦, a center-surround feature that can match quadratic regions, and
three-rectangle features with a larger middle part [LKP03]. The additional fea-
tures are shown in Figure 2.3 and the rotated features are shown in Figure 2.4.

2.2.2 Integral Image
The main advantage of using the simple features described in the previous
section, instead of using more sophisticated features, like for instance Gabor-

11

2 Basic principles

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 2.4: Rotated Haar-like features introduced in [LKP03]

wavelets or steerable filters lies in the ability to compute them very rapidly us-
ing an intermediate representation of the input image, called the integral image.
Thus more features can be used, at least partly compensating the simplicity of
the features.

The integral image contains at location (x, y) the sum of the image intensities
of the pixels to the right of and above the pixel (x, y), including the pixel itself:

ii(x, y) =
x∑

x′=0

y∑
y′=0

i(x′, y′), (2.2)

where ii(x, y) is the integral image and i(x, y) is the input image.
The integral image can be computed efficiently in one pass over the input

image using the recurrences

s(x, y) = s(x, y − 1) + i(x, y) (2.3)
ii(x, y) = ii(x− 1, y) + s(x, y) (2.4)

where s(x, y) is the sum of image intensities in rows 0 to y of column x. s(x, y)
and ii(x, y) are considered to have the value 0 for negative parameters.

With the integral image, the sum of pixel intensities inside a rectangular area
can be computed very rapidly using only four table lookups. Considering the
rectangular area defined by the two points (x1, y1) and (x2, y2), then the sum of
the pixel intensities in this area can be computed as:

S = ii(x2, y2)− ii(x1, y2)− ii(x2, y1) + ii(x1, x1) (2.5)

12

2.2 Haar-feature based object detectors

(x, y)

(a)

D

A

C

B

(b)

Figure 2.5: Integral image: (a) The value of the integral image at (x, y) is the sum of
the pixels to the right and above (x, y) in the original image. (b) The area
of the rectangle D can be computed as area(A + B + C + D) − area(A +
C)− area(A+B) + area(A). Each area term is just the value of the integral
image at a specific location, so the area of D can be computed with just four
table lookups.

See Figure Figure 2.5 for a graphical explanation.
Since the rectangles of the features described in the previous section are ad-

jacent, they can be computed using six, eight or nine table lookups, for the
two-rectangle, three-rectangle and four-rectangle features respectively.

The additional rotated features introduced by Lienhart can also be efficiently
computed using an integral image for rotated rectangles [LKP03].

2.2.3 Classifier Learning
Since for a 24× 24 pixel image, there are already over 180, 000 features, consid-
ering only the ones originally proposed by Viola and Jones, they can not all be
evaluated, even if the evaluation is very fast. The authors empirically confirmed
that an effective classifier can be built using only a small number of the features
and proposed a learning algorithm to select those features.

They chose to use a variant of AdaBoost (cf. Section 2.1), both to select the
features and to train the classifier that uses those features. The proposed variant
uses a greedy feature selection strategy: for each feature, a classifier is trained
that only uses this feature. The classifier with the lowest classification error is
selected and put into the standard AdaBoost algorithm as the next weak clas-
sifier. As explained in Section 2.1, the AdaBoost algorithm outputs a weighted
sum of the weak classifiers.

The first two features that are selected for the task of face detection are shown
in Figure Figure 2.6. The first feature exploits the fact that the eye-region is

13

2 Basic principles

(a) (b) (c)

Figure 2.6: Haar features used in first stage of face detector

Sub-
window

Stage 1 Stage 2 . . . Stage n
Face

detected

reject
sub-window

reject
sub-window

reject
sub-window

yes yes yes

no no no

Figure 2.7: Cascade structure

usually darker than the cheek-region below it while the second feature uses the
fact that the bridge of the nose is generally brighter than the eyes.

With this classifier training approach, very good results can be obtained. How-
ever, the number of features needed to reach high detection rates is still too large
to achieve reasonable system speed, considering that all the features have to be
evaluated for a sliding window over the whole image in different scales.

2.2.4 Classifier Cascades
To further reduce the processing time drastically the authors introduce a so-
called classifier cascade, where an input image has to pass through stages to
be classified as positive and if one stage rejects the image, the whole process is
aborted (see Figure 2.7). The idea behind this approach is that it is very easy
to build a simple classifier using a small number of features that rejects most of
the negative sub-windows while detecting almost all positive sub-windows. The
later stages are then mainly concerned with achieving a low false positive rate,

14

2.3 Particle filter

and thus use a larger number of features and are more expensive to compute.
By employing this cascade structure, the number of sub-windows, for which the
later stages have to be evaluated, is reduced dramatically. The large majority
of the sub-windows are rejected in the early stages, which are evaluated very
quickly.

The stages are trained by using the modified AdaBoost approach described
above and then lowering the threshold, so that the false negative rate is min-
imized. For each stage, features are added until a target detection rate and a
target false positive rate have been met. More stages are added until a global
target detection rate and false positive rate are met.

The global detection rate D and the global false positive rate F can be com-
puted from the rates for the stages di and fi as:

D =
N∏
i=0

di F =
N∏
i=0

fi (2.6)

where N is the number of stages.
Using these formulas it is possible to train the classifiers and stages in such a

way that they reach a predefined detection and false positive rate (if that is at
all possible).

So for instance ten stages with detection rates of 0.999 and false positive rates
of 0.3 would yield a global detection rate of about 0.99 with a very low false
positive rate of about 10−5.

2.3 Particle filter
The general problem of tracking objects can be stated as a problem of dynamic
state estimation. That is, trying to estimate the state of a system, given only
indirect and noisy observations. Several algorithms have been proposed to solve
this task, most notably the Kalman filter [Kal60]. It assumes Gaussian probabil-
ity distributions for the state of the system and the various noise terms, as well
as a linear motion model. If these assumptions are fulfilled, the Kalman filter can
be shown to be the optimal algorithm to solve this problem [Kal60]. In many
practical problems, however, the probability distribution of the system state is
multimodal and cannot be adequately modeled as a Gaussian distribution. A
class of algorithms that can work in cases of arbitrary probability distributions
are so-called particle filters, which will be described below.

2.3.1 Bayesian tracking
In the following, we consider a system that has an internal (i.e. unobservable)
state xt ∈ Rnx, that progresses over time, yielding a state sequence (x1,x2, . . .).

15

2 Basic principles

The state propagation can be generally modeled as:

xt = ft(xt−1,vt−1) (2.7)

where vt−1 is an independent and identically distributed (i.i.d.) process noise
sequence and ft is a possibly non-linear and temporally varying function of the
previous state and the process noise term.

Since the state is hidden, we can only measure it indirectly. This is expressed
in the following definition of the measurement zt:

zt = ht(xt,nt) (2.8)

where nt is an i.i.d. measurement noise sequence and ht is a possibly non-linear
and temporally varying function of the current internal state and the measure-
ment noise term.

The goal of tracking algorithms is now to estimate the internal state at time
t, xt, given all the measurements up to time t, z1:t. Since the confidence of the
result is also useful, a natural way to express this estimate is the probability
density function (PDF) p(xt|z1:t), which, from a Bayesian perspective, can be
seen as a degree-of-belief for possible states xt, given the measurements z1:t.

In principle, the PDF can be obtained recursively in two stages, that are at the
core of most tracking algorithms: prediction and update.

First note that the PDF can be rewritten using Bayes’ theorem as:

p(xt|z1:t) = p(zt|xt)p(xt|z1:t−1)∫
p(zt|xt)p(xt|z1:t−1) dxt

(2.9)

The prediction stage takes the estimate from time step t− 1, p(xt−1|z1:t−1) and
uses the system model (2.7) to compute the prior PDF at time step t:

p(xt|z1:t−1) =
∫
p(xt|xt−1)p(xt−1|z1:t−1) dxt−1 (2.10)

The measurement zt, that becomes available at time step t, is then used in
the update step to modify the prior density from the prediction step using the
likelihood function p(zk|xk), to finally get the wanted posterior density p(xt|z1:t).

If the initial PDF p(x0), before any measurements are made, is known, then
the recurrence relations (2.9) and (2.10) can in principle be used to derive the
optimal Bayesian solution. However, the solution can not be analytically solved,
except for very specific cases. The Kalman filter is the optimal solution for the
case of linear functions f and h and Gaussian noise terms v and n.

For other cases, the exact solution has to be approximated. An example of an
approximating algorithm is the extended Kalman filter, which can work with
non-linear functions ft and ht, by linearizing them at each time step. The

16

2.3 Particle filter

extended Kalman filter has however the same underlying assumption as the
Kalman filter, that the probability density p(xt|z1:t) is Gaussian. In cases where
this is not true, for example when the PDF is multi-modal, the (extended)
Kalman filter can never describe the real PDF well. In this case, other models
are preferred, one of which is the particle filter.

2.3.2 Particle Filter
The term particle filters describes a class of algorithms, the most basic of which
was described by Isard and Blake in [IB98a], and termed CONDENSATION. It
will be described in detail in this section.

The basic idea of particle filter algorithms is to represent the probability den-
sity function p(xt|z1:t) as a finite set of weighted samples (or particles):

{(s(1)
t , π

(1)
t), . . . , (s(N)

t , π
(N)
t)}

where s(n)
t is a sample and π(n)

t is its associated weight. This technique is called
factored sampling.

The CONDENSATION algorithm is depicted in Figure 2.8 and works itera-
tively as follows: first, a new set of samples {s(n)

t } is built by sampling (with
replacement) from the old set {s(n)

t−1}, choosing an element with probability π(n)
t−1.

Elements with high weights can be selected multiple times, while elements with
low weights might not be selected at all.

The second step corresponds to the prediction step in the Bayesian algorithm.
Here it is divided into two sub-steps. First, a deterministic motion model is ap-
plied to each element. Afterwards a noise term is added to each element, sepa-
rating elements that were selected multiple times from the old set. The resulting
elements form the new sample set, which can be seen as an approximation of a
random sample from the prior density p(xt|z1:t−1).

The final step corresponds to the update step in the Bayesian algorithm. It
uses an observation model, that should ideally resemble the observation den-
sity p(zt|xt), to assign a weight to each element in the new sample set. The
final result then, is the new sample-set representation of the state at time t:
{(s(1)

t , π
(1)
t), . . . , (s(N)

t , π
(N)
t)}.

The CONDENSATION algorithm is relatively simple, compared to the Kalman
filter for example, despite the fact that it can handle more general cases.

The design parameters include the number of particles N , the motion model,
the observation model and the noise terms. The way in which the observation
model is used is very convenient, because in practice all that is needed is to as-
sign weights to a finite set of states, which can afterwards be normalized to sum
up to one. The computational complexity can also be conveniently adjusted

17

2 Basic principles

Figure 2.8: Overview of the CONDENSATION algorithm [IB98a]

18

2.4 Dimensionality reduction using DCT

using the number of particles N . Of course, the higher the number of parti-
cles is, the better the weighted samples can represent the true posterior density
p(xt|z1:t). The number of particles, which can represent the posterior density
well, of course, also depends on the dimensionality of the state vector.

The CONDENSATION algorithm has been successfully used in many practical
systems, e.g. [NGSM05]. There are also improvements to the algorithm [IB98b,
AMGC02].

2.4 Dimensionality reduction using DCT
A problem often encountered in computer vision is that of working in high-
dimensional vector spaces. The curse of dimensionality [DHS00] is a term coined
for the (often counter-intuitive) problems one runs into when applying algo-
rithms in high-dimensional spaces.

Because of these problems, the dimensionality of the vector space needs to be
reduced, while on the other hand keeping the important information. For this
task, many algorithms have been proposed, the most important of which are the
principal component analysis (PCA) and the discrete cosine transform (DCT).
The goal of both algorithms is to transform the input vector into a different
coordinate system, where most of the dimensions are expected to contain very
little information. In other words, the goal is to find a coordinate system, where
the information (that is the variation between different vectors) is contained in
very few dimensions, while the others carry very little information. The idea
then, is to remove the unimportant dimensions by projecting on the important
ones, thereby reducing the dimensionality without losing much information.

The discrete cosine transform (DCT) is related to the Fourier transform, and
very similar to the discrete Fourier transform (DFT). The difference is that the
DCT uses only real numbers and cosine basis functions while the latter uses sines
and cosines through the use of complex exponentials.

The formal definition of the DCT is as follows:

C(u) = α(u)
N−1∑
x=0

f(x) cos
(
π(2x+ 1)u

2N

)
u = 0, 1, 2, . . . , N − 1 (2.11)

where

α(u) =

√

1
N

if u = 0√
2
N

otherwise
(2.12)

The inverse DCT is given by:

f(x) =
N−1∑
u=0

α(u)C(u) cos
(
π(2x+ 1)u

2N

)
x = 0, 1, 2, . . . , N − 1 (2.13)

19

2 Basic principles

u

v

Figure 2.9: DCT basis functions for 8× 8 pixel images

The DCT can be easily extended to 2D data, giving the 2D DCT:

C(u, v) = α(u)α(v)
N−1∑
x=0

N−1∑
y=0

f(x, y) cos
(
π(2x+ 1)u

2N

)
cos

(
π(2y + 1)v

2N

)
(2.14)

for
u = 0, . . . N − 1 and v = 0, . . . , N − 1 (2.15)

and the inverse 2D DCT:

f(x, y) =
N−1∑
u=0

N−1∑
v=0

α(u)α(v)C(u, v) cos
(
π(2x+ 1)u

2N

)
cos

(
π(2y + 1)v

2N

)
(2.16)

for
x = 0, . . . N − 1 and y = 0, . . . , N − 1 (2.17)

In (2.16) the coefficients C(u, v) can be interpreted as weights for a number
of basis functions, which are shown in Figure 2.9 for 8 × 8 pixel images. From
(2.14) it can be seen that C(0, 0) just computes the mean of the data (multiplied
by the constant N). This can also be seen from Figure 2.9 where the base for
u = 0 and v = 0 is a constant function. It can also be seen from this figure that
the spatial frequencies increase from left to right for the horizontal frequencies
and from top to bottom for the vertical frequencies. So the lowest frequencies
are on the top left, while the highest frequencies are on the lower right.

20

2.5 Histogram backprojection

The DCT has many useful properties, that make it a convenient transformation
for many tasks.

Energy compaction The PCA is the optimal transform in terms of energy com-
paction, but it has been shown that the DCT approaches the energy com-
paction of the PCA for typical correlated images. In general, the DCT yields
high values for low-frequency coefficients while the high-frequency coeffi-
cients generally have very small values. It is thus very easy to reduce the
dimensionality without losing much information by just removing a num-
ber of the high-frequency components. This property is exploited by the
JPEG standard which has the DCT at its core.

Separability The DCT can be computed in two steps by performing the 1D DCT
on the rows and column of an image. This has computational advantages
over other transforms like the PCA, which are in general not separable.

Orthonormality The DCT is an orthonormal transform, which means that it is
invertible and therefore lossless. So one retains full control over which
information is discarded and which is kept. No information is lost in the
transformation itself.

Data-independence The basis functions of the DCT are independent of the data
to which they are applied. This has the advantage that the transform itself
always stays the same. In contrast, when using PCA, if new data arrives,
that is significantly different from the old data, the learned basis functions
of the PCA might not be able to represent the new data well. In that case
one would have to choose between the sub-optimal representation or com-
puting new basis functions. But in the latter case all old data would have
to be transformed again, since the transform itself has changed. These
problems are completely avoided by using the DCT.

2.5 Histogram backprojection
In many tasks, one is interested in finding regions in an image that have some
specific color, modeled for example with a histogram or a Gaussian mixture
model (GMM) in some color-space. An approach that is often used in this case
is histogram backprojection. The idea is to model the interesting colors as a his-
togram and then to replace the pixel colors by the value of the model histogram
for each pixel’s color. The result is a gray-value image that can be interpreted
as a probability map of the presence of the color(s) that are modeled by the
histogram.

21

2 Basic principles

A modification, that is often applied to the above standard form of backpro-
jection, is called histogram division. The idea is not using the model histogram
directly, but computing the histogram of the current image and divide the model
histogram by it:

Hr(c) = min
(

Hm(c)
Hi(c) , 1

)
(2.18)

where c is a vector in some color-space, Hm is the model histogram and Hi is
the image histogram.

Using histogram division has the advantage that colors ,that are part of the
model, but are also very common in the background, get a lower score, while
colors, that are in the model and are very rare in the image, get a higher score.

The amount of model color an image may contain before the probability is
reduced can be tuned by adjusting the sum of the model histogram, which can
be seen as the number of pixels, that are expected to have interesting colors.

22

3 Shot Boundary Detection
Virtually all video content produced today for commercial or private purposes is
a sequence of so called shots. A shot is just a temporal sequence of images, usu-
ally taken with a video camera. At a boundary between two shots, the sequence
of images of the first shot stops, being followed by the images of the second shot.
Often some kind of visual effect like a fade to black is applied to the frames close
to the shot boundary to make the transition more visually pleasing.

Usually the time, location and/or camera angle change between different
shots. Therefore it is very important that low-level video content analysis like
tracking is performed only within shot boundaries and not across them. Con-
sider for example tracking a person’s face through a video. Then a shot boundary
occurs and in the new scene there’s the face of a different person at the same
location in the image as in the preceding shot. The tracker would continue
tracking and not notice the change in identity!

So accurate shot boundary detection is very important for this work, but it is
equally important for all the tasks in video content analysis.

3.1 Types of shot boundaries
There are many transition effects that can be applied to shot boundaries. Some
of the widely used ones will be described in the following subsections.

3.1.1 Cuts
In the simplest case of a shot boundary, the frames of the first shot are immedi-
ately followed by the frames of the second shot, without addition of intermediate
frames or alterations of existing ones. This type of shot boundary is called cut.

3.1.2 Fades
Fades are generated by linear scaling of the image intensity over time. Usu-
ally the intensity of a number of frames preceding the shot boundary is scaled
linearly in time from the original intensity to zero (i.e. a black frame). Then
optionally more black frames are inserted, after which the first frames of the

23

3 Shot Boundary Detection

second shot follow, with their intensities scaled linearly from zero to the original
image intensity. Visually this gives the impression of the first shot fading away
to black frames, followed by the second shot fading in from the black frames.
Sometimes one of the fades is also replaced by a cut.

An example of a fade can be seen in Figure 3.1. Note that the lengths of
the fade-out and the fade-in are significantly different. In this case the fade-in
consists of only one intermediate frame between zero intensity in frame 2176
and full intensity in frame 2178. In other cases even this single intermediate
frame is left out and the fade-in effectively becomes a cut.

3.1.3 Dissolves
Dissolves are similar to fades but instead of fading to intermediate black frames,
the shots fade into each other. So the ending frames of the first shot and the
starting frames of the second shot overlap and are combined by computing a
weighted sum of the frames. This is done in a way so that in the beginning, the
combination only consists of the frame from the first shot. Then the influence
of the second shot is increased linearly until in the end the combination con-
sists solely of the frame from the second shot. In practice, dissolves are further
categorized into short or fast dissolves, that last up to five frames, and long dis-
solves or just dissolves, that last longer. Although there is no difference in the
generation of the two types of dissolves, the visual appearance is very different.
Also, because of the limited amount of image changes that can occur within the
duration of a short dissolve, different algorithms can be used to detect them.

An example of a fast dissolve can be seen in Figure 3.2 and an example of
a (slow) dissolve is shown in Figure 3.3. Note that in the longer dissolves,
significant image changes can be part of the transition, while for the shorter
dissolves the images stay approximately constant during the transition.

3.2 Shot boundary detection module
The goal of this system component is to segment a given video file into a number
of shots, labeling each shot by the starting and ending frames.

Note that since the effects applied to the video data to generate shot bound-
aries other than cuts can affect the video analysis algorithms negatively, and
since the transitions are generally not very long and/or contain very little useful
information, these altered frames are not considered to be part of either shot.

The shot boundary detection system is built in a modular way and consists
of an MPEG decoder [FFM], several feature extractors, several detectors for
different types of shot boundaries, and a fusion module, that fuses the results of
the different detection modules.

24

3.2 Shot boundary detection module

Frame 2139 Frame 2140 Frame 2141

Frame 2142 Frame 2143 Frame 2144

Frame 2145 Frame 2146 Frame 2147

Frame 2148 Frame 2149 Frame 2163

Frame 2176 Frame 2177 Frame 2178

Figure 3.1: Example of a FOI transition

25

3 Shot Boundary Detection

Frame 7531 Frame 7532

Frame 7533 Frame 7534

Frame 7535 Frame 7535

Figure 3.2: Example of a fast dissolve transition

26

3.2 Shot boundary detection module

Frame 16756 Frame 16757 Frame 16758 Frame 16759 Frame 16760

Frame 16761 Frame 16762 Frame 16763 Frame 16764 Frame 16765

Frame 16766 Frame 16767 Frame 16768 Frame 16769 Frame 16770

Frame 16771 Frame 16772 Frame 16773 Frame 16774 Frame 16775

Frame 16776 Frame 16777 Frame 16778 Frame 16779 Frame 16780

Frame 16781 Frame 16782 Frame 16783 Frame 16784 Frame 16785

Figure 3.3: Example of a (slow) dissolve transition

27

3 Shot Boundary Detection

Each detection module declares which features it requires, and how many
frames of history should be kept. All the requests are consolidated, so that only
required features are computed, and features that are used by multiple detection
modules are only computed once. Because of this flexible design, it is also very
easy to experiment with different inputs to the detection modules.

The detection modules are specialized for a specific type of shot boundary
and are described in detail below. New modules can be easily integrated into
this framework.

The fusion module has the purpose of resolving any conflicts that may arise,
like overlap of shot boundaries detected by different modules.

After fusion, the system outputs an XML file containing the detected shot
boundaries, or equivalently a list of of shots with start and end frame numbers.

3.2.1 Cut detector
Good results have previously been achieved with using color histogram differ-
ences to detect cuts, which should in almost all cases cause a peak in the color
histogram difference between adjacent frames.

In [Lie99], the author uses the L1-distance:

dt = 1
N

R∑
r=0

G∑
g=0

B∑
b=0
|Ht(r, g, b)−Ht−1(r, g, b)| (3.1)

However, it was determined experimentally that a quadratic difference as used
in [LGZ+06], results in much stronger peaks, making this distance measure more
appropriate for the task at hand. In contrast to [LGZ+06], in this work, the RGB
color space was used instead of HSV. The histogram extracted from each frame
has 8 bins per color.

The histogram difference is then computed as follows: first the 3D histograms
are vectorized, yielding histogram vectors x and y. The difference is then given
by:

d(x,y) = (x− y)TA(x− y) (3.2)

where aij is the similarity of the colors corresponding to the centers of the his-
togram bins i and j:

aij = 1−

√
(ri − rj)2 + (gi − gj)2 + (bi − bj)2

N
(3.3)

and where N is a normalization constant, so that 0 ≤ aij ≤ 1.
The cut detector uses this RGB histogram difference feature to find cut candi-

dates. For this, it considers a window of a fixed size around the current frame.
In this work, the size was set to wc = 7. The cut detector searches for peaks,

28

3.2 Shot boundary detection module

so if the current frame is not the largest value in the window, the candidate is
immediately discarded. Otherwise the following values are computed:

• the kurtosis of the values in the window,

• the ratio of the current value and the sum of the other values in the win-
dow, and

• the ratio of the current value and the second largest value in the window.

If the current candidate is at frame number t0, then the largest value within
the window is by definition at frame t0. Let the second largest value in the
window be at frame t1, and let f(t) be the value of the histogram difference
feature at frame t, then the three values can be computed as follows:

kc(t0) =
1
wc

∑wc
i=1(xi − x̄)4(

1
wc

∑wc
i=1(xi − x̄)2

)2 − 3 (3.4)

sc(t0) = f(t0) + c

c+∑wc/2
i=1 f(t0 + i) + f(t0 − i)

(3.5)

rc(t0) = f(t0)
max{f(t1), c}

(3.6)

where xi = f(t0 − wc
2 + i), x̄ = 1

wc

∑wc
i=1 xi and c is a small positive constant that

prevents problems when the feature values are close to zero.
The histogram difference f(t0) and the computed values k(t0), s(t0) and r(t0)

are then checked against thresholds. If any threshold is not reached, the candi-
date is discarded as a cut candidate but passed to the fast dissolve detector.

Normally, this would be the time to declare a detected cut. It has however
been observed, that sudden flashes of light, like a flash from a camera or also
flashlights of a police car can lead to false detections, because they cause large
histogram differences, while the image structure stays constant. To prevent
those false detections, each cut candidate that has passed the thresholds is sub-
jected to a flash detector.

The flash detector [LGZ+06] works on edge maps, because they stay relatively
constant during flashes in contrast to the large changes in the color histograms.
The edge maps are generated using the Sobel filter [GW01]. The inner part
of one of the edge maps is divided into 48 × 48 pixel blocks and each block is
used as a template T, the best match is found in the other edge map E, in a
region around the block’s position. As matching error, the normalized squared
difference is used:

d(x, y) =
∑
x′,y′ (T(x′, y′)− E(x+ x′, y + y′))2√∑

x′,y′ T(x′, y′)2
√∑

x′,y′ E(x′, y′)2
(3.7)

29

3 Shot Boundary Detection

where (x, y) is the position of the template in the edge map and x′ and y′ cover
the size of the template. So in this case x′ and y′ are in the range [0, 47].

The matching errors of all blocks are summed up and if the sum fails to exceed
a threshold, a flash is detected. In that case the candidate is discarded as a cut
and passed to the fast dissolve detector. Otherwise, the candidate is declared a
cut.

3.2.2 Fast dissolve detector
The fast dissolve detector is employed on cut candidates that fail to pass the
strict requirements for a cut. It considers the histogram differences within a
window wfd of nine frames around the current candidate and computes the
ratio of the three center frames and the sum of the rest of the frames in the
window:

sfd(t0) = c+∑1
i=−1 f(t0 + i)

c+∑wfd/2
i=2 f(t0 + i) + f(t0 − i)

(3.8)

where c is again a small positive constant to prevent problems when the features
are close to zero.

If this value does not exceed a threshold, the candidate is discarded. Oth-
erwise a model-based approach is used to detect a fast dissolve [LGZ+06]. As
explained in Subsection 3.1.3, a fast dissolve can be modeled as a linear combi-
nation of two shots. Formally is can be specified as:

FD(t) =
(
1− t

tmax

)
· S1(t0 + t) + t

tmax
· S2(t) t = 0, . . . , tmax (3.9)

where S1(t) and S2(t) are the t-th frames of the fist and second shot respectively,
t0 is the frame in the first shot, where the fast dissolve starts, and tmax is the
length of the dissolve.

Since for fast dissolves, there are at most five frames in a transition, S1(t) and
S2(t) can be approximated for the duration of the transition as the first frame
before the transition, and the last frame after the transition: S1(t0+t) ≈ S1(t0) =
X and S2(t) ≈ S2(tmax) = Y .

If we now let α(t) = t
tmax

, then (3.9) becomes:

FD(t) = (1− α(t)) ·X + α(t) · Y t = 0, . . . , tmax (3.10)

This model of a fast dissolve is used by the detector to check whether a candi-
date really is a fast dissolve. All frame sequences of lengths between three and
seven frames (the two frames for α(t) = 0 and α(t) = 1, and are not part of
the transition) that contain the two candidate frames (note that a candidate is
a histogram difference, so it concerns two frames) are considered. It is assumed

30

3.2 Shot boundary detection module

that the sequence is generated according to (3.10), that is the interior frames
are linear combinations of the start frame X and the end frame Y , while α(t)
increases linearly from 0 to 1. The α(t) can be computed from the boundary
frames X and Y and the interior frame using a least-squares approach. It gives
the optimal α(t) and also the residual error. The α(t) are checked for consis-
tency, by ensuring that they increase with t and that they are in [0; 1]. If they
are inconsistent, the candidate sequence is discarded. Otherwise, the average
reconstruction error is checked against a threshold, and if it is too high, the can-
didate sequence is discarded as well. From the remaining sequences the one
with the lowest average reconstruction error is selected as the final result. The
frames before and after this candidate transition are then checked for a flash
using the flash detector described above. If no flash is detected, the candidate
transition is declared a fast dissolve, otherwise it is discarded.

3.2.3 Fade out / fade in detector

As described in Subsection 3.1.2, a FOI transition is generated by linearly scaling
the pixel intensities. It can be easily shown that the same scaling is in effect
applied to the standard deviation of the pixel intensities. Using this idea, the
standard deviation of the pixel intensities has been successfully used as a feature
[Lie01] for FOI detection.

The basic idea is to first detect frames in the video with very low standard
deviation. Although it is possible for several visually distinct colors to have the
same intensities, in practice these frames are almost always completely black or
contain exactly one color. Therefore they are also called monochrome frames. In
this approach, contrary to [Lie99], these monochrome frames are regarded as a
(possibly partial) shot boundary in themselves. The reason is that sometimes,
a FOI is not finished by a fade in but by a cut. In this case the approach de-
scribed in [Lie99] would break down because it only models fade-out / fade-in
transitions. Care has to be taken though, that the threshold for the detection of
monochrome frames is set to a conservatively low value, because otherwise dark
scenes might be erroneously classified as monochrome frames. Also, as already
mentioned, monochrome frames can also result from colored frames. Since they
rarely constitute a shot boundary, a color detector is used that uses the same RGB
histogram that is extracted for the cut detector and determines the percentage
of gray pixels in the image. If the ratio is smaller than a threshold, the frame is
not marked as monochrome.

Consecutive monochrome frames are fused into a block and this block is then
declared as a monochrome block. Additionally it is checked for a fade-in at
the start of the block and a fade-out at the end of the block. This is done by
computing a line of regression through the points of the standard deviation time

31

3 Shot Boundary Detection

series [Lie99]. If the correlation is high enough and the slope of the line is steep
enough, a fade-in or fade-out is detected, respectively.

The fade-in, fade-out and the monochrome block are later merged in the fu-
sion module.

3.2.4 Dissolve detector
For the dissolve detector a heuristic approache similar to the one used in the fast
dissolve detector was implemented.

Dissolve candidates are detected similarly to [LGZ+06]. The smoothed inten-
sity standard deviation is checked for a decrease followed by an increase. Each
of these cases is a dissolve candidate.

For each candidate the point of minimal standard deviation is found and it
is checked that the start or the end of the dissolve has a significantly larger
standard deviation than the minimum. If this is the case, the sequence of frames
with a length of nine frames around the frame with minimum standard deviation
is checked for a dissolve using the same technique as described in section 3.2.2.
If a dissolve is detected, the complete candidate is declared a dissolve.

3.2.5 Fusion module
The fusion module is responsible for fusing the monochrome frames returned by
the FOI detector with corresponding fades, cuts or dissolves. The other function
is to resolve overlapping transitions. Especially the dissolve detector produces
many false positives, so if a dissolve is overlapping with any other transition, the
dissolve is usually discarded.

32

4 Face tracking
Tracking faces in TV series is a difficult task. This comes from the fact that many
of the features generally used for tracking are not available or unreliable in TV
series types of video. For instance, 3D information is very useful for tracking,
but obviously not available in TV series. Foreground-background segmentation
is also very difficult to use in TV series, since the background changes from
shot to shot and often also within a shot due to camera movement. Movement
information is also difficult to extract from these videos, since there may be any
number of objects that move through the image (cars, animals, etc.) and further
camera movements can make the movement information close to useless. Color
information is also often used for tracking, but due to the large variations in the
environmental conditions, using color robustly is much more difficult than in a
fixed environment.

The tracking approach proposed in [DDCF01] and the CamShift algorithm
[Bra98] have been tried without success. In the end the particle filter approach
was used for the tracker in this work. It has been shown to yield good results for
various tasks and has been successfully used for several works in our institute.
The particle filter tracker is explained in detail in this chapter.

4.1 Particle filter parameters
Since the goal is to track faces, the location and the size of the face have to be
part of the state. Because the face detector, which plays a significant role in the
tracker, considers only square regions of the image, the face was modelled as a
square region as well.

Additionally, depending on the motion model in use it might be necessary to
model the velocities of the location and size. It was experimentally determined,
that the location parameter benefits significantly from a linear motion model,
whereas for the size parameter simple Gaussian noise suffices.

So in total the state vector looks as follows:

s = (x, y, vx, vy, s) (4.1)

where (x, y) is the location of the center of the face box, (vx, vy) is the current
velocity of the face box and s is its size.

33

4 Face tracking

Each track consists of 500 particles. The motion model the the location is lin-
ear with Gaussian noise. The size does not use a motion model but just Gaussian
noise.

4.2 Features
As mentioned already, many features generally used for tracking are not avail-
able or difficult to use robustly in the videos this work is analyzing.

The two features, that could be used to build a robust tracker, are skin color
segmentation and results from several face detectors. The features will now be
explained in detail.

4.2.1 Color segmentation
Since this work is concerned with tracking faces, an obvious idea is to find re-
gions of the images that have skin color. Several approaches have been proposed
for this task [PBC05], using different methods of modelling skin and non-skin
color and also various ways of classifying pixels as skin or non-skin.

In this study, the color model consists of a color histogram and classification
is performed by histogram backprojection, as described in Section 2.5.

However, the use of histogram division is problematic because it is impossible
to know how many faces are expected in the image and because of pose variation
the amount of skin color can also vary drastically even if no persons appear or
disappear. Because of this, histogram division was not used in this work.

Color model

The model histogram was built fully automated by running a frontal face-de-
tector on one of the videos and extracting a patch from the center of the face
detection with height and width one third of the height and width of the face de-
tection. Of course the face detector produces some false detections, but because
they are relatively rare compared to the large number of correct detections, their
influence on the color model is negligible. Some samples of the detected faces
and the regions used to generate the model histogram are shown in Figure 4.1.

Several color spaces and histogram sizes were tested. While the differences
between them were small, in the end the HS (HSV without intensity) color space
with 128 × 128 bins was used. Additionally, bins corresponding to small satura-
tions were set to zero, because the colors they represent are mostly white and
have very little real color information.

Obviously this single model is not very well suited to cover all possible en-
vironmental conditions, so it is a good idea to adapt the model to the current

34

4.2 Features

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.1: Examples of the data used to build the color model: (a)-(f) Successful ex-
tractions of skin colored pixels. (g)-(i) Non skin-colored pixels are included
because of large pose variations or false face detections.

35

4 Face tracking

scene. In this work, the initially trained color model is only used at the be-
ginning of the video. Afterwards, the model is continuously adapted when the
tracker has a very high confidence of tracking a frontal face. The adaptation is
performed similarly to the initial model building, in that the inner part of the
tracker’s current face box is used to extract a histogram, which is then used to
adapt the model histogram using a given learning rate α:

Hnew = Hold + αHface (4.2)

Afterwards, the histogram is normalized.

Histogram backprojection

On each frame that was analyzed, the backprojection algorithm was applied,
yielding a gray-value image that can be interpreted as a probability map for the
presence of skin. This map is then thresholded with a fixed threshold, to extract
skin-color regions.

In other works several more or less sophisticated post-processing steps are
used to reduce the amount of clutter from skin-colored regions in the back-
ground. Examples of this include blob analysis, where certain conditions on
the size and shapes of the connected components of the skin regions are used
to remove some of the clutter. Constraints might include a certain roundness,
or a minimal and maximal aspect ratio of the principal components. This was
however very difficult to do in this work, mainly due to the fact that the vary-
ing environmental conditions lead to significant background clutter, which is in
many cases directly connected to the real skin region. Also, because of the large
pose variations and different hairstyles and other occlusions, the shape of the
face blobs varies dramatically, even if they can be extracted reliably. So in the
end connected-component analysis was not performed for this work.

Another post-processing step that is sometimes performed is hysteresis thresh-
olding. Here, the regions that resulted from the thresholding, are grown as long
as the new pixels lie above a second threshold, lower than the first. This is gener-
ally used to get larger regions of skin color without having to use a lower initial
threshold, which would lead to more background regions being falsely detected
as skin colored. However, in this case the problem was that the threshold had to
be set quite conservative already in order to cover all the lighting variations in-
herent in the data. Additionally, using hysteresis thresholding did not add much
for the correct face blobs but significantly added to the amount of background
clutter. Because of this, hysteresis thresholding was also not performed in this
work.

In general, the skin color segmentation works reasonably well, considering
the difficult input data, but there is still significant background clutter, which in

36

4.2 Features

some scenes with difficult illumination, can make the skin-color segmentation
close to useless. Therefore it is very difficult to perform tracking based on the
color segmentation alone.

Some examples of the skin-color segmentation can be seen in Figure 4.2.

4.2.2 Confidence based Haar detectors
The second feature that is used in this work to track faces is the output of a
Haar-cascade based face detector. As described in Section 2.2, Haar-cascades
have been successfully used for face detection [VJ04]. For this work the imple-
mentation contained in OpenCV [Ope] was used.

A simple idea would be to just run such a face detector on each frame and
associate close detections in adjacent frames. This is also known as tracking-
by-detection. However, it turned out that the face detector, while having good
performance, is not quite good enough to do tracking-by-detection. There are
too many misses.

So the next idea is to use the output of the face detector as a feature for the
particle filter tracker. However, the problem with this is, that the face detector
gives a binary result: face / non-face. The particle filter however works with
confidences, which are impossible to derive from a binary output. This means,
for instance, that there is no way to distinguish a close miss from a correct nega-
tive result, so this feature would bring us no further than tracking-by-detection;
and as explained in Subsection 4.2.1, the skin color feature is not robust enough
to be used for tracking on its own in the case the face detector misses a face.

So it would be highly desirable if the face detector could be extended to output
confidences and not only binary decisions.

One way to do this would be to use the number of the last stage, the can-
didate image passed, as a confidence. This is somewhat crude, but has been
successfully used in practice.

A better approach exploits a property of the AdaBoost algorithm that is used
in the face detector. As shown in Section 2.1, AdaBoost outputs weights αk for
the so called weak classifiers hk(α) and the final classification function is:

H(x) = sign
(∑

k

αkhk(x)
)

(4.3)

It would now be an obvious idea to just use the sum
∑
k αkhk(x) as a measure

of confidence. And indeed it can be shown that if one wraps a sigmoid function
around this sum, the result converges to the posterior probability of an object (a
face in our case) existing, with increasing training data [MDWW04]:

P (face|x) = 1
1 + 2 exp (∑k αkhk(x)) (4.4)

37

4 Face tracking

(a)

(b)

Figure 4.2: Sample skin color segmentation results: (a) Good segmentation. (b) Signif-
icant background clutter.

38

4.3 Observation model

However, the matter is complicated by the use of separate stages in the Haar-
cascade algorithm (cf. Section 2.2), since the computation of the weak classifiers
is completely aborted if a stage in the cascade is not passed. The result of the
weak classifiers contained in later stages cannot be incorporated without giving
up the efficiency that the stage-structure provides. This means that if we only in-
clude the results of the weak classifiers from the stages that are passed, the final
result could be higher or lower than the real result obtained when evaluating all
stages. In practice, the results will be too high for candidates discarded in the
first stages, since those are almost certainly not faces and it can be expected that
they would accumulate further negative scores in subsequent stages. On the
other hand, it can be expected that correctly detected faces accumulate a sub-
stantial positive score through all the stages, since each stage has to be passed
for a detection. So the fact that the confidences assigned to the non-faces are
too high is not a big problem, since the correct detections (and also the close
misses, that fail in one of the final stages) are expected to have a much higher
score, since they have more stages where they can accumulate positive scores.

One could also think to include a penalty term for missed stages, however in
experiments it was determined that this is not necessary and would be difficult
to tune.

Additionally it was found that including the sigmoid function compressed the
confidences too much and just using the sum directly yielded more stable results.

An example of a confidence map for an image with a face in it can be seen in
Figure 4.3. This confidence map was computed for the size of the face of the
person in the foreground. It shows at each position the confidence that there is
a face in the image at that position.

Computing this confidence map is quite slow even for just one size. However,
the particle filter works in such a way, that the confidences are only needed for
a fixed number of locations and sizes. This is very convenient, since computing
these specific confidences is both simple and fast.

In total, three face detectors were used, one for frontal faces and one for left-
and right-profile faces respectively.

4.3 Observation model
As described in Section 2.3, the observation model of the particle filter is used
to assign a confidence to each of the current particles (states), based on the
current observation. The two features described above are the sources from
which the confidences are derived in this work. Since, as already hinted, the
skin color segmentation is not robust, it cannot be used for tracking alone. Thus
in this work, the skin color map is used as a binary confidence: if the percentage
of skin-pixels in the current face box exceeds a certain threshold cskin is set to

39

4 Face tracking

(a)

(b)

Figure 4.3: Example of the confidence map generated by the face detectors: (a) Input
image. (b) Confidence map for a fixed face size.

40

4.4 Initialization

one, otherwise it is set to zero. This way, obvious false detections of the face
detectors are discarded with help of the skin color segmentation, but the skin
color segmentation is not used for deriving the confidences of the other particles.

The confidences of the three face detectors are used directly as described
above. Since the three detectors detect different views, the maximum of the
confidences of the three detectors was used to give the final confidence. The
confidences of the face detectors are not normalized, and, since the frontal face
detector has more stages and more weak classifiers, the scores for the frontal
face detector are generally higher than for the profile detectors. This is con-
venient, since the profile face detectors are not as robust as the frontal face
detector. Therefore a higher confidence for the more robust frontal face detec-
tor is warranted. Because of this inherent asymmetry the confidences of the face
detectors did not need to be weighted to incorporate the higher robustness of
the frontal face detector.

So the final confidence is computed as follows:

c(s) =
{

max(cf , clp, crp) if S(s, I) > θs
0 otherwise (4.5)

where cf , clp and crp are the confidences from the three face detectors, S(s, I) is
the percentage of skin pixels within the face box represented by the state s in
the current image I, and θs is a threshold.

4.4 Initialization
To find new tracks and initialize the particles, the face detectors are run in reg-
ular detection mode in regions with significant amounts of skin-color. For each
detected face a new track is started.

4.5 Detection of lost tracks
A track is deleted if the maximum confidence of all its particles falls below a
threshold. If the complete track contains no more than 10 frames, which corre-
sponds to 0.4 seconds, the whole track is discarded.

4.6 Overlap handling
A big issue in tracking of multiple objects is the handling of overlaps between
several objects. The general difficulty of this problem is only alleviated in this

41

4 Face tracking

work due to the difficult data and the limited amount of information that can be
extracted reliably from it.

It can, however, be noted, that when two faces overlap, one face will always be
occluded during the overlap, while the other will not. The idea now is that the
occluded face should generally have a lower confidence than the non-occluded
face. So the overlap handling in this work was done by detecting that two tracks
overlap, and then deleting the track with lower confidence. This turned out to
be a very effective solution.

42

5 Classification
The tracker described in the last chapter provides a number of tracks for each
shot in a video, where a track is a sequence of face boxes in subsequent frames.
The next step, in order to classify or cluster the face images, is feature extraction.

5.1 Alignment

To account for rotations and different scalings of the faces that are gathered by
the tracker, it is a good idea to normalize the view of the face, a step usually
called registration or alignment.

There are several approaches on how to do this, the simplest of which is to de-
tect the locations of the eyes in the face and then perform a Euclidean transform
to move the eyes to predefined coordinates. This way, the in-plane rotations and
the different scalings can be normalized. The issue of out-of-plane rotations is
however not addressed by this alignment approach.

5.1.1 Eye detection

To detect the eyes in a face image, Haar-cascade based eye detectors are em-
ployed, one for each eye. They output a number of detections, from which the
most likely ones have to be selected.

It has to be noted, that the eye-detectors were trained for a fixed environment
and do not nearly work as reliable as the face detectors. There are many false
detections as well as a considerable number of misses.

Because of this, it does not make much sense to apply the eye detectors to
face images that are not close to frontal. In profile or half-profile images, eyes
will be detected but the locations will most certainly be wrong.

So in this work, the eye detector was only applied to face images with a high
confidence for a frontal face.

To determine the best candidates out of the detected eye locations, the mean
eye locations of face images were computed by applying the frontal face detector
to a database of images with known eye locations. The eye locations nearest to
the means were selected as the final detections.

43

5 Classification

5.1.2 Experiments without alignment
Normally, alignment is a vital step in a face-recognition system. There are how-
ever systems, that could avoid the step by providing a lot more data to the system
[RBK07]. The additional data is expected to cover at least partly the variations
that are normalized out by the alignment step. So in this work, experiments
were also done without the alignment step. The idea is, that the tracker pro-
vides a sequence of images that are known to belong to the same person and
possibly contain variations in pose, illumination and/or scale.

5.2 Feature extraction
The feature extraction method used in this work is based on local appearanches
and works as follows [ES05]: first, it is assumed that the input images are di-
visible into 8 × 8 pixel blocks. This can always be accomplished by scaling the
image to an appropriate size, when no alignment is used, or by cropping the
aligned face image to an appropriate size if alignment is used. The image is
then split into non-overlapping 8× 8 pixel blocks and the DCT is applied to each
of the blocks. Then local feature vectors are built using zig-zag scanning, as
shown in Figure 5.1. The first coefficient is omitted since it represents the mean
gray value of the local block and is mainly influenced by illumination. From the
remaining coefficients, the first N are selected, where N is usually 5 or 10. As a
final step, the local feature vector is normalized to a unit-norm vector, in order
to further reduce illumination effects [ES06]. The global feature vector is then
created by concatenating the local feature vectors.

Because of the properties of the DCT (cf. Section 2.4), the resulting feature
vector retains much of the original information in the image, while discarding
information that is mostly influenced by unwanted effects like illumination and
considerably reducing the dimensionality of the data.

5.3 Classification
The details of classification differ for the three application scenarios, but in gen-
eral, distances between extracted features are used to infer the identity to asso-
ciate with the images.

For the closed-set identification task, only frontal faces with successful eye
detection are considered. The face images are aligned, so that the eyes are at
predefined coordinates and then cropped to 56 × 64 pixels, so that they can be
divided into 8 pixel blocks. Then the DCT feature extraction is applied and five
or ten coefficients are retained (DCT-5 & DCT-10). The classification then works

44

5.3 Classification

0 1

2

3

4

5 6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35 36

37

38

39

40

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57 58

59

60

61

62 63

Figure 5.1: Zig-zag scanning of DCT coefficients

as follows: DCT features are extracted from a training set of face images with
labeled identities. Then classification is performed by a nearest-neighbor clas-
sifier. That is, each testing feature vector is compared with all training feature
vectors, and the identity of the nearest training vector is assigned to the test-
ing vector. Very good results have previously been achieved using this approach
[ES05].

For automatic retrieval, the process is similar. In this case, one provides a
query set, consisting of face images that are aligned as described for the closed-
set identification scenario. DCT features are then extracted from each image in
the query set. The retrieval then extracts DCT features from each face image to
be searched, and retrieves the face images, whose features have a distance to
the features one of the query images, that is lower than some threshold.

For interactive retrieval, the face images were not aligned, but just cropped
to 48 × 64 pixels, to reduce the amount of background information in profile
face images. Then DCT features are extracted as described above for each face
image, that is detected in the video data. Since classification with a large number
of feature vectors is slow, and since only tracks are compared with each other in
this scenario, as a preprocessing step, the closest distances between face images
of two tracks are computed and saved for later use. The retrieval process then
starts with a single face that the user selects. The system then enlarges the query
set by including face images, that lie on the same track as the selected one.
Then the query set is automatically further enlarged by searching for tracks with

45

5 Classification

distance to one of the tracks in the query set, that is lower than some threshold.
This is done iteratively until no more tracks can be found. At that point, the
user is presented with a list of the 20 closest matching face images and is asked
to select the ones that belong to the person queried for. The tracks containing
the selected images are then added to the query set and the automatic query set
enlargement procedure is run again. The images selected as not belonging to
the queried person are stored as well, in order to not present them to the user
again. This process is repeated until no more tracks can be found automatically
and the 20 closest matches all belong to different persons than the one queried
for.

46

6 Experiments
Several experiments were performed to assess the performance of the parts of
the system, as well as the performance of the whole system in some simple
application scenarios. In this section the experimental data will be described
and the results of the experiments will be presented.

6.1 Experimental data
Since this work is on TV series, several DVDs of two TV series were used as
data. The TV series used are the british series Coupling and the german series
Stromberg. Each episode is about 30 minutes in length and contains around
40,000 frames. The resolution of the video data is 720× 405 pixels.

Three episodes of Coupling and one episode of Stromberg were labeled with
shot boundary information, and one episode of Coupling was labeled with track
and identity information that consists for each frame of the location of the cen-
ters of the faces and the identity of the person.

Additionally, the shot boundary detector was run on the TRECVID 2007 data
for shot boundary detection, which consists of general TV recordings of vari-
ous genres, including documentaries, movies, news and commercials. The data
consists of 17 video files with 637,805 frames in total and contains 2,463 shot
boundaries of various types.

Example frames from the video data can be seen in Figure 6.1.

6.2 Recall / precision metric
In the retrieval literature, precision and recall metrics are commonly used to
measure the performance of a system. These metrics have been extensively
used in this work as well and are now explained shortly.

The precision and recall metrics suppose a task of retrieval of documents.
Here, documents should be understood as an abstract term, which can mean
literal documents in a newspaper database for example, but also shot boundaries
or tracks. The task is now to retrieve interesting documents from some corpus of
data.

47

6 Experiments

(a)

(b)

(c) (d)

Figure 6.1: Example frames from the video data: (a) Coupling. (b) Stromberg. (c)-(d)
TRECVID 2007 shot boundary data set

48

6.3 Shot boundary detection

Episode Recall Precision F1-Measure

Coupling S1E1 98.3% 98.3% 98.3%
Coupling S1E2 96.3% 98,0% 97.1%
Coupling S1E6 98.3% 98,1% 98.2%
Stromberg S1E1 97.0% 98.5% 97.7%

Table 6.1: Results of shot boundary detection on TV series data

The precision and recall metrics are then defined as:

precision = # relevant documents retrieved
documents retrieved

(6.1)

recall = # relevant documents retrieved
relevant documents in corpus

(6.2)

(6.3)

The precision measures the reliability of the results, or the probability that a
retrieved document is really interesting, while the recall measures the complete-
ness of the results, or the probability that a given interesting document is found
by the system.

Additionally, sometimes the two metrics are combined yielding the so-called
F1-measure, which is computed as

F1 = 2 · precision · recall
precision + recall

(6.4)

6.3 Shot boundary detection
The shot boundary detector was run on four episodes of the TV series, as indi-
cated in Section 6.1. The results are shown in Table 6.1. As can be observed, the
results are very good. Because over 95% of the shot transitions in the TV series
are cuts, the results show that the shot boundary detection system handles cuts
very well. Indeed most of the errors on this type of data come from the few more
difficult transitions, like dissolves or wipes, the latter of which are not handled
at all by our system.

Because the TV series data can be considered simple in terms of the shot
transitions, the system was also evaluated on the TRECVID 2007 shot boundary
detection data, which is also described in Section 6.1 and which contains much
more diverse types of video and also much more non-cut shot transitions.

Four different metrics are applied in the TRECVID evaluations

49

6 Experiments

Total precision and recall This metric takes into account all transitions and
measures the precision and recall of the system.

Cut precision and recall This metric only takes into account the transitions that
consist of five frames or less.

Gradual precision and recall This metric only takes into account the transitions
that consist of more than five frames.

Frame precision and recall This metric takes into account the gradual transi-
tions (i.e. transitions consisting of more than five frames), that were cor-
rectly detected by the system and measures the recall and precision of the
frames in each transition.

Ten runs with different parameters were submitted. The runs are described in
Table 6.2. The results for shot boundary detection on the TRECVID 2007 data
are shown in Tables 6.3-6.6. The F1-measure for each metric has been added.
Graphs of the results including the results from the other groups participating in
the TRECVID 2007 evaluations are shown in Figures 6.2 and 6.3.

Again, it can be observed, that the system handles short transitions like cuts
and fast dissolves very well. However, the results for longer transitions are not
quite as high. This mainly comes from the fact, that the dissolve detector failed
to work reliably. From Figure 6.3, it can be inferred, that the candidate selec-
tion works, because the frame precision and recall are reasonably high, but the
detection of dissolves did not work well. This means that the heuristic mod-
elling that was used successfully for the short dissolves, can not be employed
for longer dissolve transitions, because the model can not cover image changes,
that occur within the dissolve transition. This problem has to be addressed in
the future to make the shot boundary system more robust.

However, since the video data used for the rest of this thesis contains mostly
cuts, the shot boundary detector in its current state is completely adequate.

6.4 Face tracking
To evaluate the performance of the face tracker, first a useful performance metric
has to be established. In the literature, the CLEAR Multi-Object Tracking (MOT)
metrics can be found [BS08]. They measure a tracker’s ability to accurately
localize tracked objects and consistently track objects through time, so that ide-
ally only one trajectory per object exists, and each trajectory follows exactly one
object.

There are two problems in using this approach. First, because in this work,
only the face center is labeled and the MOT metrics expect face bounding boxes,

50

6.4 Face tracking

Run Description

base Baseline
mod1 Monochrome frames with with color are discarded
mod2 Lower thresholds for cuts
mod3 Higher thresholds for cuts
mod4 Lower thresholds for fast dissolves
mod5 Higher thresholds for fast dissolves
mod6 Dissolves have precedence over other transitions
mod7 Lower thresholds for dissolves
mod8 Higher thresholds for dissolves
mod9 No dissolve detection

Table 6.2: Descriptions of the ten runs submitted for TRECVID 2007

Run Comment Recall Precision F1-Measure

base Baseline 91,3 59,8 72,2
mod1 Discard FOIs with color 91,4 60,1 72,5
mod2 lower thr. for cuts 93,1 58,8 72,1
mod3 higher thr. for cuts 90,0 59,8 71,9
mod4 lower thr. for fast diss. 92,7 51,3 66,0
mod5 higher thr. for fast diss. 90,9 60,1 72,3
mod6 dissolves have precedence 81,3 53,4 64,5
mod7 lower thr. for dissolves 91,8 40,1 55,8
mod8 higher thr. for dissolves 90,4 81,7 85,8
mod9 no dissolve detection 87,6 92,0 89,8

Table 6.3: Total precision and recall on TRECVID 2007 data

51

6 Experiments

Run Comment Recall Precision F1-Measure

base Baseline 93,6 94,1 93,9
mod1 Discard FOIs with color 93,9 93,9 93,9
mod2 lower thr. for cuts 95,6 89,8 92,6
mod3 higher thr. for cuts 92,3 95,1 93,9
mod4 lower thr. for fast diss. 95,5 70,2 80,9
mod5 higher thr. for fast diss. 93,2 95,7 94,4
mod6 dissolves have precedence 82,6 94,4 88,1
mod7 lower thr. for dissolves 93,5 94,1 93,8
mod8 higher thr. for dissolves 93,7 94,1 93,9
mod9 no dissolve detection 93,8 94,0 93,9

Table 6.4: Cut precision and recall on TRECVID 2007 data

Run Comment Recall Precision F1-Measure

base Baseline 65,5 8,9 15,7
mod1 Discard FOIs with color 63,1 8,7 15,4
mod2 lower thr. for cuts 65,5 9,0 15,9
mod3 higher thr. for cuts 65,5 8,9 15,7
mod4 lower thr. for fast diss. 61,7 9,2 16,0
mod5 higher thr. for fast diss. 65,5 8,9 15,6
mod6 dissolves have precedence 67,0 7,8 13,9
mod7 lower thr. for dissolves 72,8 4,4 8,3
mod8 higher thr. for dissolves 54,4 23,3 32,6
mod9 no dissolve detection 20,4 44,2 27,9

Table 6.5: Gradual precision and recall on TRECVID 2007 data

52

6.4 Face tracking

Run Comment Recall Precision F1-Measure

base Baseline 74,8 71,2 72,9
mod1 Discard FOIs with color 74,6 71,3 72,9
mod2 lower thr. for cuts 74,8 71,2 72,9
mod3 higher thr. for cuts 74,9 71,3 73,0
mod4 lower thr. for fast diss. 73,5 72,0 72,8
mod5 higher thr. for fast diss. 74,6 71,2 72,8
mod6 dissolves have precedence 76,2 69,9 72,9
mod7 lower thr. for dissolves 73,8 70,5 72,1
mod8 higher thr. for dissolves 74,5 73,4 73,9
mod9 no dissolve detection 77,6 87,2 82,1

Table 6.6: Gradual frame precision and recall on TRECVID 2007 data

Figure 6.2: Cut precision and recall on the TRECVID 2007 data

53

6 Experiments

Figure 6.3: Gradual frame precision and recall on the TRECVID 2007 data

the metric would have to be changed, so that the results could not be mean-
ingfully compared to other systems. And second, the MOT metrics expect the
tracker to do identification while tracking, i.e. associating the two parts of a bro-
ken track. Failure to do this is penalized in the MOT metrics. Since in this work,
the face tracking step is used to extract face images for later classification, this
association is not performed while tracking. Instead, it is implicitly or explicitly
performed in the classification step. Because of this, the face tracker of this work
would be penalized and the results, again, would not be representative.

So instead, the idea behind the development of the MOT metrics was used to
build a metric suitable for this work. First, it needs to be established, how many
of the persons in the video are found by the tracker. Of course it has to be defined
precisely, what found means in this case. For this work, the following approach
was used: in each frame, the face labels were assigned to the tracks by choosing
for each face label that nearest track, but only if the face label lies within the
face box of the track (i.e. the track covers the face label). The identities for the
frames in a track are then used to assign an identity to the whole track by simple
majority vote. So in the end each track has one identity assigned to it, or it has
no identity, if none of its face boxes are near a label. This can happen for false
detections but also for background characters, that are not labeled. In the latter
case, the tracks were not considered, since tracking a background character is
not an error.

Using the established track correspondences, the track precision and recall are

54

6.4 Face tracking

defined as follows:

track precision = # tracks that have an identity assigned
of tracks found

(6.5)

track recall = # of tracks that have an identity assigned
tracks that are in the manual labels

(6.6)

where in the case of track recall, multiple detected tracks for one person in a shot
are counted only once in the numerator, because otherwise the results would
overestimate the actual performance, since broken tracks would be counted mul-
tiple times.

This metric gives an idea what percentage of the persons occurring in the
video are correctly detected (at least for a short time) and how many completely
false detections there are. It says however nothing about how good the tracking
is really working. Therefore another metric is needed.

The second metric concerns the tracking quality. What we want to know is,
for each track that is found, how many of the found face boxes actually cover the
correct face and how many of the faces in the actual labeled track are covered
by the detected track. To this end, exactly those two things are computed for
each track, and then a weighted average is taken with weights proportional to
the length of the track. The idea is that a badly tracked trajectory with a high
length is worse than a badly tracked trajectory that is very short. So the metric
is termed weighted average frame precision and recall (WAFP & WAFR), and is
computed as follows:

WAFP =
N∑
t=1

frames(t)
C

face boxes in track t, that cover correct face
face boxes in track t

(6.7)

WAFR =
N∑
t=1

frames(t)
C

face boxes in track t, that cover correct face
frames in labeled track corresponding to track t

(6.8)
where frames(t) is the number of frames in track t, N is the number of tracks
detected, and C = ∑

t frames(t) is a normalization constant.
This measure gives an idea of the quality of the tracks. If the tracks cover

a majority of the faces actually occurring in the shot, then WAFR will be close
to 100%. And if the tracks contain no false detections, i.e. they do not lose
the tracked face, or even worse, switch from one person to another, then WAFP
will be close to 100%. Obviously only the tracks, where a correspondence to a
person could be established, are considered in this metric, since for the others,
the frame precision and recall have no meaning.

The results for the labeled episode of Coupling are shown in Table 6.7. As
can be seen, the track recall is quite high. If only tracks that contain frontal
faces are considered, the track recall is even higher with 96.2%. This means

55

6 Experiments

Metric Result

Track recall 86.2%
Track recall (frontal) 96.2%
Track precision 77.1%
WAFR 92.2%
WAFP 98.5%

Table 6.7: Tracking results on labeled Coupling episode

that almost all labeled faces are detected and tracked by the tracker. The track
precision is a bit lower at 77.1%. This mainly comes from false detections of the
face detectors, that are not transient but consistent, and lead to a strong enough
confidence in the face detector, that the tracker continues tracking it. Of course
this also means that a significant amount of skin color is present at the location.
Sometimes this is true, for example necks and ears are sometimes consistently
detected as faces by the face detector. But on other occasions the problem is
clearly that the color model is not good enough to discard the false detections.
So to solve this problem, further work has to go into the color model and maybe
some better means of initializing the tracker or some other additional feature to
be used for tracking has to be found, in order not to depend solely on the face
detectors, which make errors from time to time. On the other hand, the false
detections do not play an important role in the classification step, because they
have a significantly different appearance compared to regular face images.

The WAFR and WAFP metrics are also very high, indicating that the tracks
that follow a real person have a high quality, i.e. they track most of the faces
that it should track (WAFR) and very little else (WAFP). A histogram of the
frame precisions and recalls for the tracks can be seen in Figure 6.4.

Additionally, it was checked, whether track switches occurred, i.e. whether
one track covers faces of two different persons in its course. Of the 975 tracks
that were found by the face tracker, only eight contained a track switch. Of those
eight cases, six were of the kind that an untracked person occluded a tracked
person. In that case there is very little the tracker can do and the real solution
would be to track the other person in the first place. The other two cases are
real failures of the overlap handling procedure. However two tracks is a very
low number, corresponding to only 0.2% of the tracks and is acceptable.

From the test video with about 44,000 frames, about 66,000 face images were
extracted by the face tracker.

So it can be concluded that the face tracker works very reliably, extracting
most of the faces of the tested video.

56

6.4 Face tracking

50 60 70 80 90 100
Frame precision (%)

0

100

200

300

400

500

600

T
ra

ck
s

0 20 40 60 80 100
Frame recall (%)

0

50

100

150

200

250

300

350

400

T
ra

ck
s

Figure 6.4: Histogram of frame precision and recall of the face tracks

57

6 Experiments

6.5 Application scenarios
Apart from testing the shot boundary detector and the tracker, three simple
application scenarios were explored in this work, as described in Section 5.3.
They are now explained in more detail. All application scenarios work on the
labeled Coupling episode.

6.5.1 Closed-set identification
This use-case works on the aligned frontal images provided by the face tracker
after applying eye-location based alignment. The face images that do not belong
to one of the six main characters, shown in Figure 6.5, are removed to create
a closed-set identification scenario. Then the face images extracted from the
first quarter of the video were used as training images and the rest were used
for testing. The feature extraction algorithm of this system was compared with
several other well-known face recognition algorithms. This task also has the
advantage that its results can be compared with previous results on frontal face
databases, giving an indication of how difficult the data used in this work is
relative to well-known frontal face databases often used for face recognition
benchmarks.

The results for the closed-set identification scenario are shown in Table 6.8.
It can be seen that our DCT algorithm performs significantly better than all the
other algorithms. However, the result of about 70% correct recognition rate
is also lower than the results obtained on well-known face databases such as
FERET [PWHR98], CMU PIE [SBB02], YALE [BHK97] or FRGC [PFS+05], even
though the number of subjects in this case is quite small. The main reason for
this is that the face databases come with hand-labeled eye locations. In this
work, the eye locations are determined by eye detectors and this step does not
work reliably in all cases. Examples of misalignments can be seen in Figure 6.6.
This also explains why the Bayesian intra-/extra-personal face recognizer has a
very low correct classification rate. It works with difference images between im-
ages of the same person and different persons and obviously difference images
are very badly affected by misalignment.

If the alignment step fails, the matching performed by our algorithm is not as
meaningful anymore, because the local blocks will correspond to different face
areas than in the case of correct alignment. Considering this, the results are
acceptable but clearly demand for a more robust alignment solution.

Another reason for the low results is that even though only faces, where the
confidence for a frontal view is very high, were selected, still a significant num-
ber of faces are non-frontal. Since our Euclidean alignment can not compensate
out-of-plane rotations, this also affects the performance negatively. To over-
come this problem, even more sophisticated alignment approaches have to be

58

6.5 Application scenarios

Steve Jane Susan

Sally Jeff Patrick

Figure 6.5: The six main characters from Coupling

(a) (b) (c) (d)

Figure 6.6: Examples of misaligned images: (a) Correctly aligned image. (b)-(d) Mis-
aligned images.

59

6 Experiments

Algorithm Correct classification rate

DCT (10) 70.5%
DCT (5) 69.4%
EHMM [Nef99] 67.9%
Fisherfaces [BHK97] 63.2%
Eigenfaces [TP91b] 50.4%
Bayesian [MJP00] 27.7%

Table 6.8: Results of closed-set identification

Character Training images Testing images

Steve 316 1292
Jane 118 673

Susan 198 1255
Sally 772 353
Jeff 501 2224

Patrick 6 423

Table 6.9: Occurrences of the main characters in the training and testing sets

employed that can at least partly compensate different poses.
And finally, inspection of the training set turned out that the training set is

heavily imbalanced, which can be seen from Table 6.9. Especially the charac-
ter Patrick has a lot less training data, compared to the other characters. This
additionally makes this problem more challenging.

6.5.2 Automatic retrieval
In this task, the persons different from the six main characters were not re-
moved from the dataset and the problem setting is different: given a set of
query images, find as many images of the same person as possible. Similarly to
the closed-set identification task described above, the faces extracted from the
first quarter of the video were used to build six query-sets, one for each person.
These query-sets were then used to retrieve images of the queried person from
the rest of the extracted faces.

The threshold of the distance between a probe image and the query images
was varied to give a plot of precision and recall for the automatic retrieval, which
is shown in Figure 6.7. Here it becomes obvious that the training/query set for
the character Patrick is not representative. For the other characters the results
are much better, giving recall rates between 35% and 58% at 90% precision.

60

6.5 Application scenarios

0 20 40 60 80 100
Recall (%)

0

20

40

60

80

100

P
re

ci
si

o
n
 (

%
)

Steve
Jane
Susan
Sally
Jeff
Patrick

Figure 6.7: Results of automatic retrieval

The problems in this scenario are exactly the same as the ones mentioned in
the closed-set scenario. So in order to improve the results further, the same
problems have to be solved. However, the results are encouraging because the
performance can still yield a useful system, the reasons for the non-optimal
performance are known and can be solved in further works.

6.5.3 Interactive retrieval
In this task, the goal was to test, how far one can get with unaligned face images.
The idea, as already mentioned, is that the tracker provides sets of face images,
that are known to belong to the same person and possibly cover some of the
variations that are normalized out by the alignment procedure.

However, the amount of variation in different tracks varies greatly. In some
tracks, the person sits still and the face barely moves at all, while in others, the
person is moving and looking in different directions, covering large variations
in pose. Obviously the latter type of track is more useful for this task, since with
it, face images with different poses can be retrieved, whereas with a track of the

61

6 Experiments

Figure 6.8: Interactive selection of matching faces: The top row shows face images from
the query set, the bottom row shows the closest matches from the corpus.
The user can select matching face images to assist in the retrieval process.

former type, only face images with a similar pose can be retrieved.
Thus, the next idea was to develop an automatic clustering approach that

successively enlarges the query set with found tracks in order to retrieve more
data. This approach works as follows: first, the user interactively selects a face to
be queried from the video. The system then enlarges the query set by including
all images from the track that includes the selected face. Then the query set
is iteratively enlarged by comparing all images in the query set with all other
images and finding close matches. If the distance is lower than a threshold, the
found image and the images in the track that contains it are added to the query
set.

If no more matches can be found, the user is queried by providing the 20
closest matching faces and letting the user select the correct matches. The cor-
rect matches, as well as the faces from the tracks containing them, are then
added to the query set. The images and tracks not selected by the user are also
stored, in order not to present them again. Afterwards the automatic matching
is attempted again and the process repeats until no more matches can be found
automatically and none of the 20 closest matches is a correct match.

An example image of the system can be seen in Figure 6.8. In the top row
query images are displayed, with the closest matches in the bottom row. The
color of the distance denotes the choice of the user whether the images depict
the same person.

For this approach to be successful, it is important that the precision of retrieval
stays very high. If face images of other persons than the original queried person
get in the query set, the approach obviously breaks down because it will auto-
matically extend the query set with more and more images of this wrong person.
So the approach critically hinges on the accuracy of the tracker. It should ideally
never switch from one person to another in one track. And also the threshold for
automatic matching has to be set rather conservative, since there is no recovery
from wrong matches.

The results of a representative query for different numbers of interactive selec-
tions and different thresholds for automatic query set enlargement are shown in

62

6.5 Application scenarios

0 20 40 60 80 100
Recall (%)

20

30

40

50

60

70

80

90

100

P
re

ci
si

o
n
 (

%
)

0 selections
1 selection
2 selections
5 selections
8 selections
10 selections

Figure 6.9: Results of interactive retrieval

Figure 6.9. It can be observed that there are gaps in the plot, which come from
cases where a different person gets into query set by error, which leads to many
easy automatic matches of more face images of this incorrect person, in turn
decreasing the precision considerably.

If only the cluster with high precision around 90-100% is considered, the pos-
itive effect of the interactive selections becomes clear. Without any interactive
selections, the recall only reaches 26%. With increasing number of interactive
selections, the recall increases dramatically, reaching already 60% for two selec-
tions and 80% for five selections. With ten selections a very high recall rate of
91.3% at a precision of 98.8% is reached.

These results are also encouraging, because for example in search engines,
users might be willing to put in some effort to find what they are looking for,
by selecting matching images. The results could even be stored and used for
subsequent searches, possibly after cross-checking with selections of other users.

63

7 Conclusion
In this work a system for automatic video analysis has been presented. The
system can reliably segment a video into shots, which is a necessary step for any
video-analysis task. This has been demonstrated on TV series data and also on
the more difficult TRECVID 2007 data.

Furthermore, the system can automatically detect and reliably track faces in
the video. It has been shown that the system detects most of the persons in the
video while the number of false detections stays reasonably low. The precision
of tracking has been found to be very high. That is in the large majority of cases,
the track covers the correct face all the time and all frames in a shot that contain
the face are covered by the track. As shown, the tracker also very rarely confuses
two tracks when they cross. The result is a face tracker that can reliably extract
face images from a video, which can then be further processed in many ways.

For this, three application scenarios have been presented. A closed-set identi-
fication task was used to compare the performance of our DCT face recognition
algorithm to other well-known approaches using the same data. It was shown
that our approach gives significantly better results. However, it also turned out
that the data is quite difficult for all algorithms, mainly because of problems
with the eye localization with Haar cascade-based eye detectors, that lead to
misalignment in some of the face images. Also, there were significant pose vari-
ations in the data set, which are also not handled well by any algorithm. Finally,
the training set was found to be heavily imbalanced, leading to low performance
for one of the six subjects.

An automatic retrieval task was explored, to see how our face recognition ap-
proach, that was previously mainly used in closed-set or open-set identification
scenarios would perform in a retrieval setting. The results are encouraging, but
the same problems as in the closed-set scenario affected the system performance
negatively. These problems have to be addressed to improve the performance
further.

Finally, an interactive retrieval scenario was used to explore the performance
that can be achieved with unaligned images on the one hand and interactive
assistance on the other hand. The results of this experiment indicate that un-
aligned images can be used for face recognition, although the performance is
of course worse than with correctly aligned frontal images. On the other hand,
much more data is available this way and because of the reliable tracks provided
by the face tracker, query sets can be built by using all face images from a track.

65

7 Conclusion

It was shown that interactive assistance can help significantly in the retrieval
process. With only five to ten selections of the user (corresponding to 100-200
face images that have to be classified), high recall rates could be reached, with
a precision close to 99%.

66

8 Future Work
There are several ideas on how to improve the system developed in this work.

For shot boundary detection, a better approach for long dissolve detection
has to be developed, as well as detectors for other types of shot boundaries,
that are found in TV series, like wipes. Previous systems have successfully used
SVMs for dissolve detection and model based approaches for wipe detection
[LGZ+06]. These would be viable candidates for detectors that could make
the shot boundary system more robust. Also, the speed of the shot boundary
detection module could surely be further reduced, since no effort apart from the
system design has been put into optimization.

The tracker clearly suffers a bit from the sub-optimal color modelling. More
effort has to be spent on finding a way to robustly detect skin-colored regions in
TV series data. But even with perfect skin color segmentation, the tracker would
still produce false detections, resulting for example from necks or ears. To ad-
dress these, new features have to be developed, that can be used in addition to
the confidences returned by the face detectors. Since most of the track switches
resulted from non-tracked persons, it is also clear that the initialization can still
be improved. A possible approach could be to use a “super”-tracker, that scans
the whole image, possibly using importance sampling [IB98b], and creates new
tracks for areas with high confidence. Also, more sophisticated approaches to
resolve overlaps of tracks should be tested. Although the results of this work
are already very good, track switching is a very serious error in this domain and
should be avoided altogether if possible. It could also be tried to establish track
correspondences between tracks in the same shot, based on non-facial informa-
tion, such as color of clothing or hair. The tracker was in no way optimized
for performance and could probably be made much faster, probably faster than
real-time. That way, it could also be used for online systems such as our portable
face recognizer [ST07].

Another idea would be to not only segment the video into shots, but also
group related shots that depict the same location at approximately the same time
into scenes. From this information, the presence of persons could be inferred,
and track association could be performed using hair or clothing information, as
described above.

For the classification part, clearly this work is only a first step. Most impor-
tantly more labeled data is needed to perform more experiments, also across
different movies, for example. A major problem for this kind of data is the need

67

8 Future Work

for alignment of the face images. The approach used in this work is clearly not
optimal. Active appearance model (AAM)-based approaches such as [Gao08]
could be a solution and allow much more data to be used with better alignment
than is possible in this work. The proposed approach not only aligns the image
but can also perform pose correction and has been shown to significantly im-
prove identification results for non-frontal faces. Another approach to reduce
the effect of misalignment would be to augment the training set with artificial
samples generated by varying the eye localizations. This has been shown to im-
prove the results on well-known frontal face databases but has the disadvantage
that the amount of training data increases dramatically.

For the use of unaligned images it would be useful to investigate approached
to remove the background that is invariably present in non-frontal images. A
promising approach can be found in [AZ05].

Finally it would be beneficial to develop a graphical user interface to let users
search for persons in videos. That way the performance of the system can be
demonstrated in practice and not only with numerical results.

68

Bibliography
[AHP04] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with

local binary patterns,” in Proceedings of the 8th European Confer-
ence on Computer Vision, May 2004, pp. 469–481.

[ALGS07] D. Anguelov, K.-c. Lee, S. B. Gökturk, and B. Sumengen, “Contex-
tual identity recognition in personal photo albums,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
Jun. 2007, pp. 1–7.

[AMGC02] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tuto-
rial on particle filters for online nonlinear/non-Gaussian Bayesian
tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp.
174–188, Feb. 2002.

[AZ05] O. Arandjelović and A. Zisserman, “Automatic face recognition for
film character retrieval in feature-length films,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2005, pp. 860–867.

[BA93] M. Black and P. Anandan, “A framework for the robust estimation
of optical flow,” in Proceedings of the 4th International Conference
on Computer Vision, 1993, pp. 231–236.

[BHK97] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. Fish-
erfaces: recognition using class specific linear projection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 7, pp. 711–720, Jul. 1997.

[Bir97] S. Birchfield, “An elliptical head tracker,” in Conference Record of the
31st Asilomar Conference on Signals, Systems & Computers, vol. 2,
1997, pp. 1710–1714.

[Bir98] ——, “Elliptical head tracking using intensity gradients and color
histograms,” in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 1998, pp. 232–237.

69

Bibliography

[Bor86] G. Borgefors, “Distance transformations in digital images,” Com-
puter Vision, Graphics, and Image Processing, vol. 34, no. 3, pp.
344–371, 1986.

[Bra98] G. R. Bradski, “Real time face and object tracking as a component
of a perceptual user interface,” in Proceedings of the 4th IEEE Work-
shop on Applications of Computer Vision, 1998, pp. 214–219.

[BS08] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object
tracking performance: The CLEAR MOT metrics,” EURASIP Journal
on Image and Video Processing, vol. 2008, 2008.

[Che95] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 17, pp.
790–799, 1995.

[CM02] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, pp. 603–619, 2002.

[DDCF01] T. Darrell, D. Demirdjian, N. Checka, and P. Felzenszwalb, “Plan-
view trajectory estimation with dense stereo background models,”
in Proceedings of the 8th IEEE International Conference on Computer
Vision, vol. 2, 2001, pp. 628–635.

[DHS00] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
2nd ed. Wiley-Interscience, Oct. 2000.

[DTK+02] D. Demirdjian, K. Tollmar, K. Koile, N. Checka, and T. Darrell, “Ac-
tivity maps for location-aware computing,” in Proceedings of the
6th IEEE Workshop on Applications of Computer Vision, 2002, pp.
70–75.

[ES05] H. K. Ekenel and R. Stiefelhagen, “Local appearance based face
recognition using discrete cosine transform,” in Proceedings of the
13th European Signal Processing Conference (EUSIPCO 2005), Sep.
2005.

[ES06] ——, “Analysis of local appearance-based face recognition: Effects
of feature selection and feature normalization,” in Proceedings of
the CVPR Biometrics Workshop, Jun. 2006.

[ESZ06] M. Everingham, J. Sivic, and A. Zisserman, “’Hello! My name is...
Buffy’ - Automatic naming of characters in TV video,” in Proceed-
ings of the 17th British Machine Vision Conference, Sep. 2006, pp.
889–908.

70

Bibliography

[FFM] “Ffmpeg video codec library.” [Online]. Available: http://ffmpeg.
mplayerhq.hu/

[FH00] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient matching of
pictorial structures,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, vol. 2, 2000, pp. 66–73.

[FHT00] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic re-
gression: A statistical view of boosting,” The Annals of Statistics,
vol. 28, pp. 337–374, Apr. 2000.

[FLK+02] J. Fritsch, S. Lang, A. Kleinehagenbrock, G. Fink, and G. Sagerer,
“Improving adaptive skin color segmentation by incorporating re-
sults from face detection,” in Proceedings of the 11th IEEE Interna-
tional Workshop on Robot and Human Interactive Communication,
2002, pp. 337–343.

[FS97] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” Journal of Com-
puter and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[FS99] ——, “A short introduction to boosting,” Journal of the Japanese
Society for Artificial Intelligence, vol. 14, no. 5, pp. 771–780, Sep.
1999.

[Gao08] H. Gao, “Face registration with active appearance models for lo-
cal appearance-based face recognition,” Diplomarbeit, Interactive
Systems Labs, Universität Karlsruhe (TH), Jun. 2008.

[GG05] S. Gangaputra and D. Geman, “A unified stochastic model for de-
tecting and tracking faces,” in Proceedings of the 2nd Canadian Con-
ference on Computer and Robot Vision, 2005, pp. 306–313.

[Gor06] D. O. Gorodnichy, “Seeing faces in video by computers,” Image and
Vision Computing, vol. 24, no. 6, pp. 551–556, Jun. 2006.

[Goy01] V. K. Goyal, “Theoretical foundations of transform coding,” IEEE
Signal Processing Magazine, vol. 18, no. 5, pp. 9–21, Sep. 2001.

[GW01] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed.
Pearson Education, 2001.

[HCJW07] M. Horton, M. Cameron-Jones, and R. Williams, “Multiple classi-
fier object detection with confidence measures,” in Proceedings of
the 20th Australian Joint Conference on Artificial Intelligence (AI),
Dec. 2007, pp. 559–568.

71

http://ffmpeg.mplayerhq.hu/
http://ffmpeg.mplayerhq.hu/

Bibliography

[HL01] E. Hjelmås and B. K. Low, “Face detection: A survey,” Computer
Vision and Image Understanding, vol. 83, no. 3, pp. 236–274, Sep.
2001.

[HSE+95] J. Hafner, H. Sawhney, W. Equitz, M. Flickner, and W. Niblack, “Ef-
ficient color histogram indexing for quadratic form distance func-
tions,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 17, pp. 729–736, 1995.

[IB98a] M. Isard and A. Blake, “CONDENSATION—conditional density
propagation for visual tracking,” International Journal of Computer
Vision, vol. 29, no. 1, pp. 5–28, Aug. 1998.

[IB98b] ——, “ICONDENSATION: unifying low-level and high-level track-
ing in a stochastic framework,” in Proceedings of the 5th European
Conference on Computer Vision, 1998, pp. 893–908.

[JR02] M. J. Jones and J. M. Rehg, “Statistical color models with appli-
cation to skin detection,” International Journal of Computer Vision,
vol. 46, no. 1, pp. 81–96, Jan. 2002.

[JV03] M. J. Jones and P. Viola, “Fast multi-view face detection,” Mitshu-
bishi Engineering Research Laoratories (MERL), Tech. Rep., Aug.
2003.

[Kal60] R. E. Kalman, “A new approach to linear filtering and predic-
tive problems,” Transactions of ASME, Journal of basic engineering,
vol. 82, pp. 34–45, 1960.

[Kha03] S. A. Khayam, “The discrete cosine transform (DCT): Theory and
application,” Department of Electrical & Computing Engineering,
Michigan State University, Tech. Rep., 2003.

[KHDM98] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining
classifiers,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 20, no. 3, pp. 226–239, Mar. 1998.

[KK96] R. Kjeldsen and J. Kender, “Finding skin in color images,” in Pro-
ceedings of the 2nd International Conference on Automatic Face and
Gesture Recognition, 1996, pp. 312–317.

[KMB07] P. Kakumanu, S. Makrogiannis, and N. Bourbakis, “A survey of
skin-color modeling and detection methods,” Pattern Recognition,
vol. 40, no. 3, pp. 1106–1122, Mar. 2007.

72

Bibliography

[LGZ+06] Z. Liu, D. Gibbon, E. Zavesky, B. Shahraray, and P. Haffner, “AT&T
Research at TRECVID 2006,” in Proceedings of the NIST TRECVID
Workshop, Nov. 2006.

[Lie99] R. Lienhart, “Comparison of automatic shot boundary detection
algorithms,” in Proceedings of the 7th Conference on Storage and
Retrieval for Image and Video Databases, Jan. 1999, pp. 25–30.

[Lie01] ——, “Reliable transition detection in videos: A survey and practi-
tioner’s guide,” International Journal of Image and Graphics, vol. 1,
no. 3, pp. 469–486, 2001.

[LKL03] H.-S. Lee, D. Kim, and S.-Y. Lee, “Robust face-tracking using skin
color and facial shape,” in Proceedings of the 4th International Con-
ference on Audio- and Video-Based Biometric Person Authentication,
2003, pp. 1060–1061.

[LKP03] R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical analysis of
detection cascades of boosted classifiers for rapid object detection,”
in Proceedings of the 25th Symposium of the German Association for
Pattern Recognition, 2003, pp. 297–304.

[Low04] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2,
pp. 91–110, Nov. 2004.

[MDWW04] Y. Ma, X. Ding, Z. Wang, and N. Wang, “Robust precise eye location
under probabilistic framework,” in Proceedings of the 6th IEEE In-
ternational Conference on Automatic Face and Gesture Recognition,
May 2004, pp. 339–344.

[MJP00] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian face recog-
nition,” Pattern Recognition, vol. 33, no. 11, pp. 1771–1782, Nov.
2000.

[Nef99] A. Nefian, “A hidden Markov model-based approach for face de-
tection and recognition,” Ph.D. dissertation, Georgia Institute of
Technology, 1999.

[NGSM05] K. Nickel, T. Gehrig, R. Stiefelhagen, and J. McDonough, “A joint
particle filter for audio-visual speaker tracking,” in Proceedings of
the 7th International Conference on Multimodal Interfaces, 2005, pp.
61–68.

73

Bibliography

[Ope] “Open source computer vision library (OpenCV).” [Online].
Available: http://www.intel.com/technology/computing/opencv/

[PBC05] S. L. Phung, A. Bouzerdoum, and D. Chai, “Skin segmentation us-
ing color pixel classification: analysis and comparison,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 27, no. 1,
pp. 148–154, 2005.

[PFS+05] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min, and W. Worek, “Overview of the face recogni-
tion grand challenge,” IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pp. 947–954, Jun. 2005.

[POP98] C. Papageorgiou, M. Oren, and T. Poggio, “A general framework for
object detection,” in Proceedings of the 6th International Conference
on Computer Vision, Jan. 1998, pp. 555–562.

[PWHR98] P. J. Phillipsa, H. Wechslerb, J. Huangb, and P. J. Raussa, “The
feret database and evaluation procedure for face-recognition algo-
rithms,” Image and Vision Computing, vol. 16, no. 5, pp. 295–306,
Apr. 1998.

[Qua] “The Quaero project.” [Online]. Available: http://www.quaero.
org/

[RBK07] D. Ramanan, S. Baker, and S. Kakade, “Leveraging archival video
for building face datasets,” in Proceedings of the IEEE 11th Interna-
tional Conference on Computer Vision, Oct. 2007, pp. 1–8.

[RJ07] J. Ren and J. Jiang, “Statistical classification of skin color pixels
from MPEG videos,” in Proceedings of the 9th International Confer-
ence on Advanced Concepts for Intelligent Vision Systems, Aug. 2007,
pp. 395–405.

[RMG98] Y. Raja, S. J. McKenna, and S. Gong, “Tracking and segmenting
people in varying lighting conditions using colour,” in Proceedings
of the 3rd. International Conference on Automatic Face and Gesture
Recognition, 1998, pp. 228–233.

[SB90] M. J. Swain and D. H. Ballard, “Indexing via color histograms,” in
Proceedings of the 3rd International Conference on Computer Vision,
Dec. 1990, pp. 390–393.

[SB91] ——, “Color indexing,” International Journal of Computer Vision,
vol. 7, no. 1, pp. 11–32, Nov. 1991.

74

http://www.intel.com/technology/computing/opencv/
http://www.quaero.org/
http://www.quaero.org/

Bibliography

[SBB02] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and
expression (PIE) database,” in Proceedings of the 5th IEEE Interna-
tional Conference on Automatic Face and Gesture Recognition, May
2002, pp. 46–51.

[Sch99] R. Schapire, “A brief introduction to boosting,” in Proceedings of the
International Joint Conferenceon on Artificial Intelligence, 1999, pp.
1401–1405.

[SCT02] M. C. Shin, K. I. Chang, and L. V. Tsap, “Does colorspace transfor-
mation make any difference on skin detection?” in Proceedings of
the 6th IEEE Workshop on Applications of Computer Vision, 2002,
pp. 275–279.

[SEZ05] J. Sivic, M. Everingham, and A. Zisserman, “Person spotting: video
shot retrieval for face sets,” in Proceedings of the 4th Conference on
Image and Video Retrieval, 2005, pp. 226–236.

[SM05] G. Shakhnarovich and B. Moghaddam, “Face recognition in sub-
spaces,” in Handbook of Face Recognition, S. Z. Li and A. K. Jain,
Eds. Springer, 2005, pp. 141–168.

[SMHL00] M. Soriano, B. Martinkauppi, S. Huovinen, and M. Laaksonen,
“Skin detection in video under changing illumination conditions,”
in Proceedings of the 15th International Conference on Pattern Recog-
nition, vol. 1, 2000, pp. 839–842.

[SSZ04] J. Sivic, F. Schaffalitzky, and A. Zisserman, “Object level grouping
for video shots,” in Proceedings of the 8th European Conference on
Computer Vision, May 2004, pp. 189–210.

[ST94] J. Shi and C. Tomasi, “Good features to track,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Jun.
1994.

[ST07] L. Szasz-Toth, “Open-set face recognition,” Studienarbeit, Interac-
tive Systems Labs, Universität Karlsruhe (TH), Oct. 2007.

[Sta06] J. Stallkamp, “Video-based face recognition using local appear-
ance-based models,” Diplomarbeit, Interactive Systems Labs, Uni-
versität Karlsruhe (TH), Nov. 2006.

[SZS06] J. Sivic, C. L. Zitnick, and R. Szeliski, “Finding people in repeated
shots of the same scene,” in Proceedings of the 16th British Machine
Vision Conference, 2006, pp. 909–918.

75

Bibliography

[TP91a] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,”
in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, Jun. 1991, pp. 586–591.

[TP91b] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of
Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[TSFA00] J.-C. Terrillon, M. N. Shirazi, H. Fukamachi, and S. Akamatsu,
“Comparative performance of different skin chrominance models
and chrominance spaces for the automatic detection of human
faces in color images,” in Proceedings of the 4th IEEE International
Conference on Automatic Face and Gesture Recognition, 2000, pp.
54–61.

[VJ01] P. Viola and M. J. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2001, pp. 511–518.

[VJ04] ——, “Robust real-time face detection,” International Journal of
Computer Vision, vol. 57, no. 2, pp. 137–154, May 2004.

[VSA03] V. Vezhnevets, V. Sazonov, and A. Andreeva, “A survey on pixel-
based skin color detection techniques,” in Proceedings of the Inter-
national Conference on Computer Graphics & Vision (GraphiCon),
Sep. 2003.

[VSM03] R. C. Verma, C. Schmid, and K. Mikolajczyk, “Face detection and
tracking in a video by propagating detection probabilities,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 25,
no. 10, pp. 1215–1228, 2003.

[WB04] G. Welch and G. Bishop, “An introduction to the Kalman filter,”
Department of Computer Science, University of North Carolina at
Chapel Hill, Tech. Rep., 2004.

[YKA02] M.-H. Yang, D. Kriegman, and N. Ahuja, “Detecting faces in im-
ages: a survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, pp. 34–58, 2002.

[YO99] T.-W. Yoo and I.-S. Oh, “A fast algorithm for tracking human
faces based on chromatic histograms,” Pattern Recognition Letters,
vol. 20, pp. 967–978, Oct. 1999.

[YWX+05] J. Yuan, H. Wang, L. Xiao, D. Wang, D. Ding, Y. Zuo, Z. Tong, X. Liu,
S. Xu, W. Zheng, X. Li, Z. Si, J. Li, F. Lin, and B. Zhang, “Tsinghua

76

Bibliography

University at TRECVID 2005,” in Proceedings of the NIST TRECVID
Workshop, 2005.

[YZC+04] J. Yuan, W. Zheng, L. Chen, D. Ding, D. Wang, Z. Tong, H. Wang,
J. W. J. Li, F. Lin, and B. Zhang, “Tsinghua University at TRECVID
2004: Shot boundary detection and high-level feature extraction,”
in Proceedings of the NIST TRECVID Workshop, 2004.

[ZCK98] W. Zhao, R. Chellappa, and A. Krishnaswamy, “Discriminant anal-
ysis of principal components for face recognition,” in Proceedings
of the 3rd IEEE International Conference on Automatic Face and Ges-
ture Recognition, Apr. 1998, pp. 336–341.

[ZCPR03] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recog-
nition: a literature survey,” ACM Computing Surveys, vol. 35, no. 4,
pp. 399–458, 2003.

[ZKC03] S. Zhou, V. Krueger, and R. Chellappa, “Probabilistic recognition of
human faces from video,” Computer Vision and Image Understand-
ing, vol. 91, no. 1–2, pp. 214–245, Aug. 2003.

77

	Title
	1 Introduction
	1.1 Motivation
	1.2 Previous work
	1.2.1 Shot boundary detection
	1.2.2 Video retrieval systems using person identification

	1.3 System overview

	2 Basic principles
	2.1 AdaBoost
	2.2 Haar-feature based object detectors
	2.2.1 Haar-like features
	2.2.2 Integral Image
	2.2.3 Classifier Learning
	2.2.4 Classifier Cascades

	2.3 Particle filter
	2.3.1 Bayesian tracking
	2.3.2 Particle Filter

	2.4 Dimensionality reduction using DCT
	2.5 Histogram backprojection

	3 Shot Boundary Detection
	3.1 Types of shot boundaries
	3.1.1 Cuts
	3.1.2 Fades
	3.1.3 Dissolves

	3.2 Shot boundary detection module
	3.2.1 Cut detector
	3.2.2 Fast dissolve detector
	3.2.3 Fade out / fade in detector
	3.2.4 Dissolve detector
	3.2.5 Fusion module

	4 Face tracking
	4.1 Particle filter parameters
	4.2 Features
	4.2.1 Color segmentation
	4.2.2 Confidence based Haar detectors

	4.3 Observation model
	4.4 Initialization
	4.5 Detection of lost tracks
	4.6 Overlap handling

	5 Classification
	5.1 Alignment
	5.1.1 Eye detection
	5.1.2 Experiments without alignment

	5.2 Feature extraction
	5.3 Classification

	6 Experiments
	6.1 Experimental data
	6.2 Recall / precision metric
	6.3 Shot boundary detection
	6.4 Face tracking
	6.5 Application scenarios
	6.5.1 Closed-set identification
	6.5.2 Automatic retrieval
	6.5.3 Interactive retrieval

	7 Conclusion
	8 Future Work

