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ABSTRACT
We present a combined system that enables a humanoid robot
to sense humans using different modalities. The user is local-
ized by means of a joint audio-visual person tracker. His face
is identified using a novel local-appearance based approach
which is robust against partial occlusion. In order to deter-
mine the user’s focus and object of interest respectively, we
estimate headpose using a neural-network classifier and rec-
ognize pointing gestures based on hand motion.

1. INTRODUCTION

In order to build human-friendly, human-centered robots, the
perception of the user(s), their locations, identities, activities,
and communicative cues are an essential necessity. Such per-
ception is necessary to understand what users do, what they
want from the robot, and to generate an appropriate response
or proactive behavior of a robot. The location of the user and
his body parts is of course also important for efficient and safe
interaction between the robot and a user.

In this paper we present our recent work on building a
audio-visual perceptual system that allows a humanoid robot
to perceive humans, their locations, identity and visual com-
munication modalities, such as pointing gestures and head
orientation, in the surrounding of the robot. This work com-
plements our lab’s work on speech recognition and dialogue
systems for humanoid robots [1], and provides among other
things the users’ visual communication cues for multimodal
human-computer dialogue [2].

The body of related work covering the individual meth-
ods used in this integrated system exceeds the scope of this
overview paper. There is, however, work on integrated sys-
tems aiming at similar targets: For example Lang et al. [3]
have demonstrated a perception system for a mobile robot that
localizes the user by means of frontal face detection, acoustic
source localization and leg detection with a laser range finder.
Furthermore, the user’s face is identified using the Eigen-
face [4] method. Okuno et al. [5] describe an audio-visual
tracking system for an upper-torso humanoid equipped with
a stereo camera and 2 pairs of microphones. Based on face
detection and acoustic source localization, the user is tracked
and motor commands for following the user with the robot
head are generated.

The remainder of this paper is organized as follows: Sec-
tion 2 presents an overview of the proposed perceptual system
and presents the individual perceptual components – audio-
visual person tracking, pointing gesture recognition, head pose
estimation, face recognition – in some detail. In Section 3,
we then present experimental results of the individual com-
ponents. We conclude the paper in Section 4.

2. PROPOSED METHODS

Fig. 1 shows an overview of the components employed for
human sensing. The available sensors on the robot head are:
a fixed baseline stereo camera and 6 omni-directional micro-
phones. The camera and microphone input streams are jointly
processed by an audio-visual person tracker that fuses both
modalities in a probabilistic framework. The output of the
person tracker, a hypothesis about the user’s head position,
is then passed on to the following components: a face iden-
tification module based on local DCT features, a head-pose
estimator using ANNs, and a 3d-blob tracker for hand track-
ing. The hand positions are in turn processed by an HMM-
based pointing gesture recognizer. The pieces of information
gathered by this perception chain are: the location of the user,
his identity and head orientation, and the pointing direction
in case of a detected gesture. The following sections describe
each of the individual components in more detail.

2.1. Audio-visual person tracking

Localizing its user is a basic capability for a robot interact-
ing with humans. Succeeding perception modules like person
identification, gesture recognition and head-pose estimation
require the location of the user in world and image coordi-
nates to perform their calculations.

The audio-visual person tracking module employed it this
system is a further development of the tracker presented in
[6]. This section summarizes the algorithm and its exten-
sions. For a more detailed description we refer to the above
mentioned publication.

In our scenario, the task of person tracking is to localize
the user in front of the robot. The features used for tracking
are foreground segmentation, face and body detection as well
as color models on the video side. On the audio side, we
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Fig. 1. System overview.

localize the user by evaluating the time-delay-of-arrival of the
user’s speech with respect to the multiple microphones on the
robot’s head.

We fuse both modalities in a joint particle filter frame-
work. Particle filters [7] represent a generally unknown prob-
ability density function by a set of m random samples s1..m.
Each of these particles is a vector in state space and is as-
sociated with an individual weight πi. The evolution of the
particle set is a two-stage process which is guided by an ob-
servation model and a motion model. The state space is given
by si = (x, y, z), i.e. each particle is a hypothesis about the
3d-position of the user’s head centroid.

Using the features described in following subsections, we
can calculate a weight for each particle by combining the
normalized probabilities of the visual observation Vt and the
acoustical observation At using an adaptive weighting fac-
tor α:

πi = α · p(At|si) + (1 − α) · p(Vt|si) (1)

The weighting factor α is adjusted dynamically according to
an acoustic confidence measure (e.g. signal energy). For the
motion model we chose simple Gaussian diffusion, i.e. a 0th
order motion model. The weighted mean of the particle set is
the final hypothesis about the user’s location.

2.1.1. Video features

For each particle, the visual observation model calculates three
scores that are made up of the following visual cues. These
scores are combined to generate a pseudo-probability p(Vt|si)

as required by equation 1. Fig. 2 shows an overview of the
feature maps.

The first cue is based on foreground segmentation. Each
pixel’s mean intensity is stored in the background model and
continuously updated with a learning factor λ. The foreground
map is made up of the absolute differences between the in-
put image and the learned background model. By choosing λ
close to 1 we achieve quick model adaptation that allows for
occasional camera movements. To evaluate a particle with re-
spect to the foreground map, a person model at the particle’s
position is projected to the image. The foreground score is
then calculated by accumulating the foreground pixels cov-
ered by this model. The model consists of three cuboids for
head, torso and legs. The projection is approximated by three
orthogonal rectangles in the image plane, such that the accu-
mulation of the pixel values can be computed efficiently by
means of the integral image [7].

The face detection algorithm proposed by [8] and extended
by [9] is known to be both robust and fast: it uses Haar-like
features that can be efficiently computed by means of the inte-
gral image, thus being invariant to scale variations. Typically,
a variable-size search window is repeatedly shifted over the
image, and overlapping detections are combined to a single
detection. Exhaustively searching a W ×W image region for
a F × F sized face while incrementing the face size n times
by the scale factor s requires

∑n−1
i=0

(
W − F · si

)2
cascade

runs. This is an issue for real-time processing.
In the proposed particle filter framework however, it is

not necessary to scan the image exhaustively: the places to
search are directly given by the particle set. For each parti-
cle, a head-sized cuboid is projected to the image plane, and
the bounding box of the projection defines the search window
that is to be classified. Thus, the evaluation of a particle takes
only a single run of the cascade. Particles producing detector
hits are given high scores, particles without detector hits are
scored low. In addition to face detection we use a detector
trained on upper bodies. The detector hits are incorporated in
the particles’ scores using the same method as for face detec-
tion.

As the third visual cue we use individual color models
for the three body parts of our model: head, torso and legs.
The color models are implemented as histograms in the rgb
color space. For each body part, a support map is generated
by histogram back-projection. Just like for the foreground
segmentation cue, the particles are scored by accumulating
the support map pixels under the projected model. Again,
the integral image can be used to reduce the computational
complexity. The color models are updated after each frame
using the final tracking hypothesis.

2.1.2. Audio features

Consider a pair of microphones, and let m1 and m2 respec-
tively be the microphones’ positions. Let x denote the po-



Fig. 2. Video feature maps with the 3-box body model superimposed. From left to right: a) Camera image, b) Foreground
segmentation, c) Detector response, d) Color segmentation (head-torso-leg color model projected to the red-green-blue channel
respectively).

sition of the speaker in a three dimensional space. Then the
time delay of arrival (TDOA) between the two microphones
can be expressed as

T (x) = T (m1,m2, x) =
‖x − m1‖ − ‖x − m2‖

c
(2)

where c is the speed of sound.
To estimate the TDOA, a variety of well-known techniques

[10, 11] exist. Perhaps the most popular method is the phase
transform (PHAT), which can be expressed as

R12(τ) =
1
2π

∫ ∞

−∞

X1(ejωτ )X∗
2 (ejωτ )

|X1(ejωτ )X∗
2 (ejωτ )|

ejωτ dω (3)

where X1(ω) and X2(ω) are the Fourier transforms of the
signals of the microphone pair.

Normally one would search for the highest peak in the
resulting cross correlation to estimate the position. In our
particle filter framework, however, we interpret the PHAT as
probability density function. As the values returned by the
PHAT can be negative, but probability density functions must
be strictly nonnegative, we found that setting the negative
values of the PHAT to zero yielded acceptable results. The
acoustic particle scores are then given by the PHAT values at
the hypothesized time-delay position T (x = si).

We integrate the scores from all those microphone pairs
that are exposed to direct sound given the microphone po-
sition with respect to the hypothesized sound source. Thus,
we have a multi-target acoustic tracker with an implicit best-
microphone-selection strategy.

2.2. Pointing gesture recognition

The modules for pointing gesture recognition and hand track-
ing used in this system have been described in detail in [12].
The gesture recognition is based on hand motion. Dedicated
HMMs are used to model the begin-, peak- and retract-phases
of typical pointing gestures. They were trained on 3d hand
trajectories of hundreds of sample pointing gestures. When-
ever the models fire successively, a gesture is being detected
and the peak phase is being identified. Within the peak phase,

the line between the head and the pointing hand is used to
estimate the pointing direction. If the positions of potential
pointing targets are known, the most likely target can be se-
lected by measuring its deviation from the pointing direction.

The underlying hand tracking algorithm is based on a com-
bination of adaptive skin-color classification and dense dis-
parity maps. The skin-colored pixels are associated with their
corresponding disparity values and are then spatially clus-
tered. Those clusters are evaluated in order to find an optimal
assignment of head and hands to skin-color clusters in each
frame. The optimal assignments maximizes three aspects:
a) the match between hypothesis and observation in terms of
skin-color pixels, b) the naturalness of the hypothesized pos-
ture, and c) the smoothness of transition from the preceding
to the current frame. After temporal smoothing, the hand tra-
jectories are passed to the gesture detection module described
above.

2.3. Head-pose estimation

A person’s head orientation provides good indication of a per-
son’s focus of attention, i.e. about the objects, area or people
in which someone is interested or with which he or she inter-
acts [13, 14]. It is in particular a quite reliable cue to deter-
mine whether a person is addressing a robot or someone else
[15], which is important to build robots that only respond to
users when it is appropriate.

As for head pose estimation, we integrated the basic sys-
tem that has been presented and described during CLEAR
Evaluation Workshop in 2006 [16]. We train one neural net-
work classifier for estimation the camera-relative head ori-
entation of a person standing in front of the robot. Retriev-
ing a region of interest as a coarse hypothesis, in which the
tracked head has to reside in, we first align a tight-fitting
bounding box around our head candidate with the help of a
skin-color segmentation in HSV color space. An attached
connected component search, that extracts regions with a min-
imally, heuristically size of 30 × 40 pixels, yields the desired
head candidate. We crop the head region and rescale it to a
normalized size of 64 × 64 pixels. A grayscale image is then
being used to both compute the Sobel magnitude in order to



Fig. 3. Neural Network for head pose estimation: The output
neurons both state a continuous hypothesis within the range
of [−90◦,+90◦]. As input features, an intensity image of the
extracted head region and its Sobel magnitude are used.

retrieve an edge map in both horizontal and vertical direction
and to be merged into a final feature vector by concatenating
the pixel values row by row. We trained a neural network to
output a continuous estimate of the depicted head orientation
in the range of [−90◦,+90◦] in both pan and tilt direction.
We use one output neuron to state a real value in between
the given range of possible angles. The network contains 80
hidden units and is being trained with Standard Error Back-
propagation. We used 100 training cycles. A cross evaluation
set was used to save the network from the very best perform-
ing training iteration. Figure 3 depicts the networks topology
and input features.

2.4. Face identification

Face recognition is one of the most important building blocks
of a natural human-robot interaction system. A humanoid
robot should recognize the people that he has met before and
store associated information related to these people to conduct
a natural conversation. Moreover, the robot should also detect
the people that he has not met and in the case of interaction
with these people, it should ask the name of them.

The intense research efforts on face recognition, espe-
cially since the beginning of 1990s, has provided significant
improvements in face recognition performance on the stan-
dard databases that have been collected under controlled lab-
oratory conditions. However, face recognition in uncontrolled
environments is still a very difficult problem [17]. To provide
robust face recognition and to overcome uncontrolled envi-
ronmental conditions, we are utilizing multiple samples of the
same face that are obtained from the video sequence. Our face
recognition system takes a face sequence, which is provided
by the tracking module described in section 2.1, as input. It
analyzes the input face images to locate the eyes and then reg-
isters the face images according to the eye center coordinates.

Local appearance-based face recognition approach is used
to extract feature vectors from each face image [18]. In this
feature extraction approach, the input face image is divided
into 8x8 pixel blocks, and on each block, discrete cosine trans-

Fig. 4. Overview of the face recognition subsystem.

form (DCT) is performed. The most relevant DCT features
are extracted using the zig-zag scan and the obtained features
are fused either at the feature level or at the decision level for
face recognition [18].

After extracting the feature vectors from each face im-
age in the sequence, they are compared with the ones in the
database using a nearest neighborhood classifier. Each frame’s
distance scores are normalized with Min-Max normalization
method [19], and then these scores are fused over the se-
quence using the sum rule [20]. The obtained highest match
score is compared with a threshold value to determine whether
the person is known or unknown. If the similarity score is
above the threshold, the identity of the person is assigned with
that of the closest match. If the similarity match score is be-
low the threshold, then the person is classified as unknown. A
simple diagram of the face recognition system is illustrated in
Figure 4.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The individual components of the proposed system have been
evaluated independently. The following sections present re-
sults for gesture recognition, head-pose estimation and face
identification. The audio-visual person tracker has not yet
been evaluated in the integrated system. In [6], however,
tracking experiments and results are presented for a different
kind of sensor setup.

3.1. Pointing Gesture Recognition

In order to evaluate the performance of the gesture recogni-
tion module, we prepared an indoor test scenario with 8 dif-
ferent pointing targets. Ten test persons were to move around
within the camera’s field of view, every now and then show-
ing the robot one of the marked objects by pointing on it. In
total, we captured 206 pointing gestures within a period of
24 min. A detailed description of the results can be found in
[12]. The gestures as well as the hand positions were manu-
ally labeled and then compared against the gesture detection
and hand tracking hypotheses. Table 1 summarizes the most
important results.



Detection rate (recall) 78%
Precision 83%

Avg. error angle 37◦

Targets identified 65%

Table 1. Evaluation of pointing gesture recognition.

Pan Avg. Error 12.3◦

Tilt Avg. Error 12.8◦

Correct Pan Class 41.8%
Correct Tilt Class 52.1%

Table 2. Experimental results of our head pose estimator on
the Face Pointing04 Database.

3.2. Head-pose Estimation

We evaluated our core head pose estimating system during
CLEAR Workshop 2006 on the Face Pointing 04 Database
[21]. The database consists of 15 sets of images. Each set
contains 2 series of 93 images of the same person at different
poses. The first set is to be used for training, the second set for
evaluation. In total, there are captures of 15 different people
with varying skin color and clothing. Some persons also wear
glasses. Figure 5 depicts some samples from the dataset. Our
system was evaluated on both horizontal and vertical head ori-
entations. As it can be seen in Table 2, horizontal estimation
performed with 12.3◦ mean error. Estimating the head’s verti-
cal rotation performed slightly worse with 12.77◦ mean error.

3.3. Face Identification

The approach is extensively tested on the publicly available
face databases and compared with the other well known face
recognition approaches. The experimental results showed that
the proposed local appearance based approach performs sig-
nificantly better than the traditional holistic face recognition
approaches. Moreover, this approach is tested on face recog-
nition grand challenge (FRGC) version 1 data set for face ver-
ification [22], and a recent version of it is tested on FRGC
version 2 data set for face recognition [23], and it provided
better and more stable results than the baseline face recog-
nition system. For example, in the conducted experiments
on the FRGC version 2 data set, 96.8% correct recognition
rate is obtained under controlled conditions and 80.5% correct
recognition rate is obtained under uncontrolled conditions. In
these experiments, there are 120 individuals in the database
and each individual has ten training and testing images. There
is a time gap of approximately six months between the cap-
turing time of the training and the test images. The approach
is also tested under video-based face recognition evaluations
and again provided better results [24, 25].

Fig. 5. Sample images from the Face Pointing 04 Database.

4. CONCLUSION AND FUTURE WORK

In this paper, we have presented an audio-visual perception
system that enables a robot to gather the following informa-
tion about its user: location, identity, head-pose and pointing
gestures. The user is being localized by processing stereo-
video and multi-channel audio in a joint particle filter frame-
work. His focus and object-of-attention respectively are de-
termined by head-pose estimation and HMM-based gesture
recognition. Face identification is performed using a novel
local-DCT-based method that has shown to be superior to
conventional holistic face recognition approaches.

In future work, we plan a more tightly coupled fusion of
the components, especially for the tracking and head-pose es-
timation modules. By mutually sharing information between
those modules, we hope to both reduce processing time and
to increase precision. Furthermore, an attentional system will
be developed that generates robot head movements to actively
explore the scene in order to search for a potential communi-
cation partner.
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