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Interactive Systems Labs (ISL)Interactive Systems Labs (ISL)

• Founded by Prof. Dr. Alexander Waibel at 1991.

• Research on:
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ISL Vision GroupISL Vision Group

• Directed by Assist. Prof. Rainer Stiefelhagen

• Focus on visual perception of people in smart rooms
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– Person Identification
– Person Tracking
– Head Pose / Focus of Attention Estimation
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ISL Face Recognition GroupISL Face Recognition Group

• Objective:
– Face recognition for smart environments.
– Developing and deploying fully automatic face 

recognition systems with the research focus on to build 
simple, fast & robust face recognition algorithms.

• Implementation areas:
– Recognizing individuals entering a room with a zoom 

camera
– Recognizing individuals in a room using fixed camera
– Human Robot Interaction –Humanoid Robots
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ISL Door Face DatabaseISL Door Face Database

• Ten thousands pictures of more than 100 individuals have 
been collected during 86 recording days (Feb. 2005, August-
Dec. 2005)

• ~30000 images of 30 individuals will become public.
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Face Recognition @ CLEAR Evals (FG2006)Face Recognition @ CLEAR Evals (FG2006)

• CHIL Project (EU IP FP6)
http://chil.server.de/

• NIST
• Goal: To recognize the 

lecturer/seminar participant 
by using video and multi-
view data acquired by four 
cameras mounted to the 
corners of the room. 

• Problem Conditions:
Low resolution faces with 
improper lighting, especially 
because of the projector's 
beam.
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Face Recognition for Humanoid RobotsFace Recognition for Humanoid Robots
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Local Appearance-based Face RecognitionLocal Appearance-based Face Recognition

• Merits:
– Robust against local variations
– Facilitates weighting/selection of the “important“ local 

regions for face recognition

• Previous approaches:
– Salient region based

• Modular Eigenfaces (Pentland et al., 1994)
• FR with SVMs: Global vs. Component-based Approach 

(Heisele et al. 2003)
• FR using Component-based DCT/LDA (Lee et al. 2005, 

MPEG7)

– Generic
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Face RepresentationFace Representation
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– Less sensitiveness to illumination and local variations

• Data-independent basis (Discrete Cosine Transform)
– Fast
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Feature ExtractionFeature Extraction

Image Block 1

Image Block 2

Image Block N

DCT

Feature
Fusion

Classifier

DCT
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Feature SelectionFeature Selection

• Selecting the first M DCT coefficients (DCT-all)
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(DCT-0)

• Removing the first three coefficients, and selecting 
the first M DCT coefficients from the remaining 
ones (DCT-3)
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Feature NormalizationFeature Normalization

• The blocks with different brightness levels lead to DCT 
coefficients with different value levels. 

normalize the local feature vector’s, f’s, magnitude to 
unit norm:

• The first DCT coefficients have higher magnitudes than the 
later ones, thus having more influence on the classification 
results. 

divide each coefficient to its standard deviation that is 
learned from the training set:
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Face Recognition ExperimentsFace Recognition Experiments

• Experimental Data derived from FRGC ver. 2 
Experiments 1 & 4

• Individuals that have at least 10 images (target, query)
are selected

• 120 individuals (10 images for training & testing)

• Controlled vs. Controlled (Fall 2003 recordings for 
training & Spring 2004 recordings for testing)

• Uncontrolled vs. Uncontrolled (Fall 2003 recordings for 
training & Spring 2004 recordings for testing)
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Distance MetricsDistance Metrics
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Sample ImagesSample Images

Controlled Samples:

Uncontrolled Samples:
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FRGC Controlled vs. Controlled -DCT & 
PCA scores @ 320 –no normalization
FRGC Controlled vs. Controlled -DCT & 
PCA scores @ 320 –no normalization

DCT DCT –
w/o DC

DCT –
w/o 3

PCA PCA -
w/o 3

L1 74.8% 94.3% 92.8% 89.2% 88.1%

L2 62.2% 86.7% 82.2% 81.8% 85.8%

Cos 78.8% 87.4% 86.3% 80.8% 88.6%

Cov 79.0% 87.8% 86.1% 80.6% 88.6%
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FRGC Controlled vs. Controlled -DCT & 
PCA scores @ 320 –unit norm 
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DCT DCT –
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DCT –
w/o 3

PCA PCA -
w/o 3

L1 90.6% 96.8% 96.8% 87.3% 90.8%

L2 79.9% 93.6% 94.3% 81.0% 89.0%

Cos 79.9% 93.6% 94.3% 80.8% 88.6%

Cov 80.0% 93.6% 94.4% 80.6% 88.6%
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FRGC Controlled vs. Controlled -DCT & 
PCA scores @ 320 –over dim. norm
FRGC Controlled vs. Controlled -DCT & 
PCA scores @ 320 –over dim. norm

DCT DCT –
w/o DC

DCT –
w/o 3

PCA PCA -
w/o 3

L1 91.3% 96.3% 95.7% 80.8% 79.9%

L2 89.4% 93.1% 91.2% 80.9% 79.6%

Cos 92.7% 93.8% 94.4% 94.2% 94.0%

Cov 93.2% 93.9% 94.4% 94.3% 94.0%
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FRGC Uncontrolled vs. Uncontrolled -DCT 
& PCA scores @ 320 –no normalization 
FRGC Uncontrolled vs. Uncontrolled -DCT 
& PCA scores @ 320 –no normalization 

DCT DCT –
w/o DC

DCT –
w/o 3

PCA PCA -
w/o 3

L1 43.6% 61.4% 60.6% 49.0% 44.1%

L2 36.9% 56.1% 55.8% 40.3% 39.1%

Cos 39.4% 69.3% 65.8% 38.4% 37.8%

Cov 39.3% 69.6% 66.1% 38.4% 37.8%
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FRGC Uncontrolled vs. Uncontrolled -DCT 
& PCA scores @ 320 –unit norm
FRGC Uncontrolled vs. Uncontrolled -DCT 
& PCA scores @ 320 –unit norm

DCT DCT –
w/o DC

DCT –
w/o 3

PCA PCA -
w/o 3

L1 70.5% 80.5% 80.8% 44.6% 43.5%

L2 63.2% 75.3% 76.8% 38.8% 38.6%

Cos 63.2% 75.3% 76.8% 38.4% 37.8%

Cov 63.6% 75.3% 76.7% 38.4% 37.8%
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FRGC Uncontrolled vs. Uncontrolled -DCT 
& PCA scores @ 320 –over dim. norm
FRGC Uncontrolled vs. Uncontrolled -DCT 
& PCA scores @ 320 –over dim. norm

DCT DCT –
w/o DC

DCT –
w/o 3

PCA PCA -
w/o 3

L1 53.3% 63.1% 58.9% 46.5% 45.7%

L2 49.8% 57.8% 56.5% 45.4% 45.1%

Cos 51.2% 67.6% 71.4% 57.4% 57.4%

Cov 50.9% 68.3% 71.6% 58.0% 57.8%
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FRGC Uncontrolled vs. Uncontrolled OverviewFRGC Uncontrolled vs. Uncontrolled Overview
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• Using proper local features / normalizing local features 
contributes face recognition performance (Similar
results have been also obtained of the AR and CMU 
PIE face databases)

• Unit norm DCT-0 / DCT-3 local features perform best

• Using proper local features / normalizing local features 
contributes face recognition performance (Similar
results have been also obtained of the AR and CMU 
PIE face databases)

• Unit norm DCT-0 / DCT-3 local features perform best

Controlled vs. Controlled
@ feature dimension of 320

PCA, 89.2%
DCT ver. 1, 94.3%
DCT ver. 2, 96.8%

Uncontrolled vs. Uncontrolled
@ feature dimension of 320

PCA, 49%
DCT ver. 1, 69.3%
DCT ver. 2, 80.5%
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