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Learning with Less (Resources)

EFFICIENT NEURAL
NETWORKS
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Efficient Neural Networks A\‘(IT

® Why do we need efficient neural networks?

Productionization

Training on high-power clusters Inference on low-power device
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® Large disparity between hardware used for training and inference

Efficient Neural Networks

® Even the average gaming PC only has a quadcore CPU and a Nvidia
GTX 1060 with 6 GB VRAM

® The average notebook/smartphone is even worse than that!

@ A lot less powerful than server setups with >100 GB RAM and multiple
GPUs
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Efficient Neural Networks '\A‘(IT

@ Additional concerns for mobile devices
# Power consumption when running battery-powered
® Heat generation

2 Model weight size when downloading over mobile networks and also when
stored on local volume
® The ImageNet-pretrained ResNet-101 weights are already 171 MB!
& Might stop users from downloading and using an app
# Runtime
@ Many applications have realtime demands, e.g. processing camera input

® Mobile hardware — especially smartphones — usually has very little computational
resources

o\
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Efficient Neural Networks '\A‘(IT

® Given these concerns, we can intuitively derive the main metrics that are
used to compare the efficiency of neural networks

@ Number of parameters, sometimes given as MB or kB sizes

2 Number of floating point calculations, usually given as FLOPs or Multiply-
Adds (sometimes called Multiply-Accumulate or MAC)

® Note that many hardware accelerators can compute a Multiply-Add operation in a
single clock cycle.

® Many researchers consider 1 Multiply-Add = 2 FLOPs. Some papers might measure
this differently however!

# Inference time as duration in seconds or throughput as frames per second
u Energy Efficiency measured in Watt or Joule

o\
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Faster ways to do convolution

EFFICIENT BUILDING BLOCKS
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Efficient Building Blocks A\‘(IT
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® Standard convolution: Most commonly a 3x3xD,, filter kernel (h x w x D)
® Single spatial position: multiply & add 3x3xD;,, values of the input with those of the filter kernel

® Example below: input volume with H,.=W, =7 and D,,channels and a filter with h=w=3 and D,
channels and no padding
® Outcome: h x w x D;, x H,,: X W, X D, Multiply-Add operations and h x w x D;, x D, weights
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A single filter evaluation at a single spatial position and a full convolution [6]
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Efficient Building Blocks A\‘(IT
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® Often h=w for a filter kernel, complexity is therefore quadratic w.r.t. h (or w)

® |In terms of computations, h=w=3 is therefore 9 times as expensive as h=w=1!

® Takeaway: 1x1 convolutions are cheap!

® Problem: 1x1 filters lack spatial awareness, a CNN with only 1x1 filters would not perform well.

® But: we can use 1x1 convolution to reduce the input dimension D,, and apply 3x3 filters
afterwards = the total number of 3x3 convolutions is reduced!

3x3 and 1x1 convolution in comparison [6]
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SqueezeNet vl

® 1x1 convolutions extensively used in SqueezeNet vl [5]

® Basic building block is the "Fire module"

® First "squeeze" input: Reduce number of channels with cheap
1x1 convolutions

® Then "expand" with a combination of 1x1 (cheap) and 3x3 (spatial
information) filters

® Concatenate output of 1x1 and 3x3 convolution
® Lowers both computation time and parameter count
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Grouped Convolution A\‘(IT
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® Grouped convolution (sometimes called group convolution)

® First introduced in AlexNet [7] in 2012, at that time more an implementation detail, nowadays
used for speeding up networks

® Main gist: divide input volume into groups. Filters only "work" on their group, in the example
below number of groups g=2.

® Each filter only has 1/g amount of work and parameters
® But each filter also only sees 1/g channels and cannot work on all information

Grouped convolution [6]

.,'\
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Depthwise Separable Convolution A\‘(IT

® Depthwise convolution is a special case of grouped convolution with g=D;,,

a Every filter group only filters 1 channel of the input volume. This is very cheap
computationally and has very few parameters.

a8 Depthwise separable convolution: depthwise convolution followed by a 1x1 convolution
(1x1 convolution is also also referred to as pointwise convolution)

Depthwise convolution [6] Pointwise convolution [6]

.7'\
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Question [5 minutes] A\‘(IT

Karlsruhe Institute of Technology

® (Reminder: standard convolution: h x w x D;, X H, X Wy, X D, Multiply-Add operations and h

X W X D;, X D, weights)

I
5
i 0 G 0

® How many Multiply-Add operations and weights do depthwise and pointwise convolutions have? Given input: H,, x W, X

D,, output: H,, X W, X D, filter size: h x w x 1 (for depthwise) and 1 x 1 x D;, (for pointwise)

out

x 128

Depthwise convolution Pointwise convolutio
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Depthwise Separable Convolution A\‘(IT

#8 (Reminder: standard convolution: h x w x D;, X H, ¢ X W, X D, Multiply-Add
operations and h x w x D,, x D, weights)

8 Depthwise part has h x w x D, X H,,; X W, Multiply-Add operations and h x w X D,
weights

8 Pointwise part has D,, X H,,; X W, X Dy, Multiply-Add operations and only D,, x D
weights

® For most inputs/outputs, even the combination of depthwise and pointwise part is more
computationally efficient than a standard convolution

Depthwise convolution [6] Pointwise convolution
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a8 MobileNet v1 [9] is mostly based on depthwise separable convolution
a Basic building block is indeed very basic, but has been shown to work decently for

many different tasks

® MobileNet v2 [10] expands on this basic unit and adds skip connections and inverted
residual structures

MobileNet v1 building block
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ShuffleNet

a ShuffleNet [8] extensively uses grouped convolution

® Problem: When only using grouped convolution, information
of the groups is never mixed (left). A red group filter would only
work on information from previous red filters.

® Solution: channel shuffle layer (right). Channels
are now mixed so that the next red filter can also consider
information from the and blue group

= Channels >
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Feature
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Output

Visualization of the grouped convolution problem and its solution
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Efficient Building Blocks — Downsampling

# For CNNs, computational demand also depends on the size h x w of the input

u Filters have to be evaluated at every spatial position, which is expensive for
large input sizes

u As often h=w, there is an obvious quadratic relationship between number of
computations and the input size

® Thus, a common strategy of efficient neural networks is downsampling fast

2 Mostly handled by the top 2 layers ("stem cells")
# Often a normal convolution with stride 2 (MobileNet v1) or a convolution with stride 2
followed by max pooling with stride 2 (SqueezeNet, ShuffleNet)

® The latter reduces the common input size of 224x224 to 56x56 in only 2 layers!
® This results in only 1/16th of spatial positions w.r.t. the input image
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Mixed Precision, Quantization and Pruning

EFFICIENT TRAINING AND
INFERENCE
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Mixed Precision -\X‘(IT
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® Commonly, neural networks are trained with 32-bit floating point (FP32) inputs and
weight parameters

® This ensures a large range of representable numbers at the cost of storage space and
computational power

# Using a smaller data type such as FP16 (half precision) would ensure more lightweight
and more performant models and also faster training!

IEEE 754 32 bit float (single precision)

1 8 - 23 ]

IEEE 754 16 bit float (half precision)

i N Y o

, and Mantissa

.x'\
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Mixed Precision A\‘(IT
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® Problem: Representable range of FP16 is small, due to 5-bit exponent and 10-bit mantissa
® Gradients below 2-?4 are rounded towards O!
® This actually happens quite a lot during training
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Histogram of activation gradient values during the training of Multibox
SSD network [13]

Percentage of all activation gradient values
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Mixed Precision

SKIT

Karlsruhe Institute of Technology

® Result: Training diverges with FP16 although it would have converged

with a FP32 data type

® Solution: Using a mixed precision ap
while also scaling the loss to an appro

50

Training diverges
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Mixed Precision, loss scale 1

Mixed Precision, loss scale 128

2,000K

Training Iteration
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Mixed Precision A\‘(IT
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® Benefits of mixed precision training:

u Half precision math throughput can be 2x-8x faster than single precision on modern
GPUs

® Weights stored on GPU take less space. Batch size can be increased!
@ Data transfers from/to the GPU are faster

® Results mostly stay the same and can even increase in some cases

a Easy to use in most deep learning frameworks such as PyTorch

Model Baseline | Mixed Precision
AlexNet 56.77% 56.93%
VGG-D 65.40% 65.43%
GoogleNet (Inception vl) | 68.33% 68.43%
Inception v2 70.03% 70.02%
Inception v3 73.85% 74.13%
Resnet50 75.92% 76.04%

ILSVRC12 classification top-1 accuracy [13]

.,'\
26 06.12.2024 Deep Learning for Computer Vision Il: Advanced Topics cv:hci @KIT




29

Pruning '\A‘(IT

® Pruning: removing redundancy/low value information from the network
® Pruning starts with a "bigger/heavier" network and tries to reduce the size

® Objective: Eliminate neurons or whole filters (in a CNN) while maintaining the metric
(e.g. accuracy)

u Can help to remove e.g. multiple filters that learned (almost) the same feature like edge
detection or color features

® Redundancy is actually quite common in NNs: Think about training with dropout, where
often 50% of the values are randomly zeroed

o\
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® There is not a singular pruning strategy that always works. Many different approaches can achieve a good
pruning ratio
® However, a common setup is [17]:

® Find unimportant filters according to some metric
® Remove filters and adjust the filters of the subsequent layer
® Finetune to "repair" the damage
® Repeat until the target pruning percentage is achieved
input of filters of input of filters of input of
layer i layer i layeri+l  layeri+l layer i+2
Original | | o | A')i N =] . :1‘ N [ i i
Model it SR i— i Subsequent filters have to
 oonmveiktien / be adjusted
Pruned ¢ 11 . ST K A . g 7|
.-\’I()dCl / y — - ' E. | : { a e :""”r.ﬂl —
5 ( . : ) |
fine-tuning
; ' —
Fine-tuned | [l « = = “4“ | % b
Model | ' 7 ’ 1 =3
.7'\ .
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® How to determine which filter to remove?
® Common strategies and metrics:

Sum of absolute weight values in a filter. Small weights tend to produce weak activations and do not contribute
much. £, or £, norms are commonly used.

Average Percentage of Zeros in a filter. Considers the sparsity of a filter, many zeros = information loss

Phrasing it as an optimization problem. [17] tries to find a filter that affects the output of the following layer the least,
removes it and finetunes the network.

[18] uses an iterativ pruning approach, temporarily removing filters while monitoring the sensitivity metric of a
detection task. Filters leading to the smallest drop are removed. No finetuning needed after every step.

@ Differences in pruning setups:

Iterative vs. one-shot methods: Iterative setups only remove a small amount of filters per step.
Finetuning: Iterative methods often retrain after every pruning step, others only at the end.

Structured vs. Non-structured pruning: Structured pruning removes whole filters, non-structured removes single
weights to induce sparsity. This often requires special hard- or software to handle.

Global vs. Local pruning: Global pruning considers all filters, local e.g. only a single layer.

o\
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Constellations in Efficient Networks A\‘(IT

Contin earning Representation Learning Interpretability

vised Learning
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PARAMETER-EFFICIENT
FINE-TUNING
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Introduction to Parameter-Efficient Fine-Tuning (PEFT)

® LLMs have a lot of weights - Fine-tuning is expensive

® More compute —

06.12.2024

H100
A100
V100
Al10G
T4
RTX 4080

Deep Learning for Computer Vision II: Advanced Topics

large and multiple GPUs
u File size — Checkpoints (GPT-3 — 800 GB)

____GPU____ | Tier | $/hr(AWS)

Enterprise
Enterprise
Enterprise
Enterprise
Enterprise
Consumer

12.29
5.12
3.90
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Introduction to Parameter-Efficient Fine-Tuning (PEFT) A\‘(IT

2 Avoid tuning the whole model
® Fine-tune only small subset of the model parameters
® Allows fine-tuning large models on consumer GPUs

a Difference between full fine-tuning and PEFT
® Pros (PEFT): computational and storage efficiency, and less prone to catastrophic forgetting

N\ New trainable
Temp memory layers
3 . i Less prone to
; Forward catastrophic forgetting
( \ Activations
LLM 1 > 12-20x
\ ‘ Gradients weights
\ — Other
g p - components
__ Optimizer states -
/ \S Trainable
Trainable e weights
Weights BOT F a3
g LLM with additional ' it s Vg
Full fine-tuning ayors for PEFT PEET
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Recap: Transformer Models 1. [2 ‘S](IT
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PARTIAL FINE-TUNING

o\
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Question [5 minutes] -\X‘(IT

@ Partial Fine-tuning
® Fine-tune part of the layers (usually the last ones)

® \WWhy could this be a potential problem for large domain shifts in inference?

Accuracy: 54% Accuracy: 20%

B_e e
5
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Partial Fine-tuning -\X‘(IT
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@ Partial Fine-tuning
® Fine-tune part of the layers (usually the last ones)
® Can be considered as PEFT
# Does not mitigate large domain shifts
® Adapters, Prompt Tuning, Prefix Tuning, and LoORA are better in practice

@ Adapt representation at different levels in the model
@ E.g. adapt low-level features in large appearance shifts

Input Intermediate

Image

Neural

Network Dog
Classifier >> 8
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ADAPTERS
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Adapters 2. [3] ~\\~‘(IT
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Adapters A\‘(IT

® Methodology
u Adapt the pre-trained model at multiple levels

8 Insert adapter modules between pre-trained layers
® Small set of additional parameters
® Fine-tune only the task-specific adapter modules

o\
42 December 6, 2024 Deep Learning for Computer Vision Il: Advanced Topics < cv:hci @KIT



Adapters 2. [3] A\‘(IMT

v Connection
L]

® Adds “corrections” to the learned representations of the pre-trained model ...} el
® Pre-trained model is unchanged t Adapter ‘L |
® New tasks > New adapters! - an| - ] ¢ Skip

® Reduced storage and training cost compared to fine-tuning
2 Only need to store the pre-trained model and the small task-specific adapters

Feed-Forward

Up-Project

Ad apter PEFT | Nonlinearity

Fine-tuning l

Pre-trained

Pre-trained

Model Model

Adapter 1 Adapter 2

Feed-Forward

Down-Project

E f Hidde
TaSk 3 E h F__!' Repn‘:cntatinn

Adapter 3  O— R—
Fine-tuned Fine-tuned Fine-tuned

Pre-trained
Model
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Model

Pre-trained
Model

Model 1 Model 2 Model 3
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Adapters — Example for 2D = 3D Segmentation 4

® Given a model trained to segment cats and dogs (and other standard classes)

Background

Dog Cat

December 6, 2024 Deep Learning for Computer Vision Il: Advanced Topics
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Adapters — Example for 2D = 3D Segmentation 4 A\‘(IT

® Given a model trained to segment cats and dogs (and other standard classes)
® Adapt it to segment volumetric brain tumors

. Background

Cat

.s.\
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Adapters — Example for 2D - 3D Segmentation 4 A\‘(IT

® Segment Anything Model (SAM) 7]

® Pre-trained on a large-scale 2D dataset of natural images
® Works well on out-of-domain data when fine-tuned

® However:
@ Can it be applied to 3D medical data?

® Usually applied slice by slice (axial)
u Extremely poor results
® No spatial coherence in predictions
® - Better: 3D convolutions!

sagittal coronal
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Adapters — Example for 2D - 3D Segmentation 4 A\‘(IT

® Adapters at multiple locations

Prediction
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Adapters — Example for 2D - 3D Segmentation 4 A\‘(IT

u Adapters at multiple locations

® Positional embeddings - Extend lookup table with depth

@ Patch embeddings - Use pre-trained 14x14 2D convolution as 1x14x14 3D convolution
® Extend with 14x1x1 depth-wise convolution to approximate 14x14x14 3D convolution

Positional embedding

+ S— DxHxWxC
& CxD
Raw image
l Patch embedding l

[‘i 1x14x14 ] %

-- 7 P .
ﬁ.’.’ i r[é‘ 14x1x1 ) .4

lmage patches esscssesssnssesssssssssssssssnsnsans® g I)’[‘if

# Frozen & Tuned
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Adapters — Example for 2D = 3D Segmentatlon [4] \‘(IT
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u Adapters at multiple locations

® Spatial Adapter
® Additional depth-wise 3D convolution before up-projection
® Adapters can learn 3D spatial information
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Adapters — Example for 2D - 3D Segmentation 4 A\‘(IT

u Adapters at multiple locations
® Mask Decoder and Point Encoder are trained from scratch with 3D convolutions
® They are already lightweight and have few parameters

Prediction

™y

3

Seg loss I

+{ J3poduad Jdwold ¥
19p0o23ap ysew

Ground truth

Point prompt
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PREFIX TUNING
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prefix Tuning 1 ST

4

- N\ QK"

—{Add & Layer Norm ] x L Attn(Q, K, V') = softmax( L%
L] Vi dl\
. MHA(x) = Concat(heady, - - - , heady, )W,

k ( Feed Forward )
4 head; = AHH((L‘W,}”,COI’ICE][(PA(.'U. wWA@i]),corlcat(Rgi], W) x € R4

r—b(Add&Layer Norm) '
7 i .

FEN(z) = ReLU(zW; + by)Ws + b,
~ = B
( Attention j Prefix Tuning
— =
Q| PB{K| P{V Pr|
P,
W{ k IW| |
| [
Hidden States (4) (i) (i)
% \_ Multi-Head / Ised Wq . Wk‘ W, ‘E [Rd*dn
. 4 PkHP’UERX WGE]R{!.X{I
:I: W] E Rdxd”. : W2 e Rdrn xd
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2 Only update the concatenated prefixes

B Intuition: Let the model learn how to “steer” itself
® Prefixes encode task-specific knowledge
2 Why not learn which prompt works best (prompt engineering)?

o\
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® Why not learn which prompt works best (prompt engineering)?

@ Optimization over discrete space Is not flexible
® Solution is forced to choose words from the vocabulary
® Model is only adapted at the input layer

/ /
wy,wz = argmax IE:lf.y[lOg PGPTQ (.1/ ’ wy, Wy, LC)]
w’ ,w’, €Vocab

Optimal prompts (prompt engineering)

.7'\
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prefix Tuning 1 ST

Karlsruhe Institute of Technology

® Why not learn which prompt works best (prompt engineering)?

@ Optimization over discrete space Is not flexible
® Solution is forced to choose words from the vocabulary
® Model is only adapted at the input layer

/ /
wy,wz = argmax IE:lf.y[lOg PGPTQ (.1/ | wy, Wy, LC)]
w’ ,w’, €Vocab

Optimal prompts (prompt engineering)

| Prefix tuning:

® Optimization over continuous variables directly with gradient descent
® Solution is flexible and task-specific
® Model is adapted in all layers

P1,Pp2 = argmax Ex,y[log PGPTQ(y | P’1,P’2,$)]
p’l ,péeRlxd

.7'\
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® Adds additional context to the learned representations in the sequence

® Pre-trained model is unchanged
® New tasks - New prefixes!

® Very similar to adapters but usually requires fewer parameters

Fine-tuning

Pre-trained

\Y[oYo[=]

Fine-tuned Fine-tuned

Fine-tuned

Model 1 Model 2 Model 3

56 December 6, 2024 Deep Learning for Computer Vision Il: Advanced Topics
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Pre-trained

Model

Prefixes 1

Prefixes 2 Prefixes 3

Pre-trained Pre-trained
Model Model

Pre-trained
Model
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PROMPT TUNING
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Prompt Tuning (soft prompts) [19] -\X‘(IT

4

f /_‘(Add & Layer NormJ x L )
L]
= F;om )
f_’( Add & Layer Norm)
4
@ ( Attention j ™
| ]
Q K V
W, |‘_"|'L W,
| |
Hidden States
g \_ Multi-Head /

concat(xz,p)

QKT

MHA(x) = Concat(heady, - - - , head, )W, head; = Attn(:I:W(}"”'. aw, ! zwith, e

Attn(Q, K, V') = softmax( )V

FFN(z) = ReLU(zW) + b, )W, + b,

x = concat(z, p) € R4t

W, W, Wy e Réxdn
W;. & R{ixd
[
W] e Rdxd,,., W2 c Rdmxd
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Prompt Tuning (soft prompts) [10] KT
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® Adds additional context to the inputs in the sequence
® Instead of the intermediate representations
® Pre-trained model is unchanged
® Similar to prefix tuning but only at input level
@ Soft prompts - Continuous values Prompt Tuning PEFT

Fine-tuning Pre-trained
Model

Soft prompt 1 | Soft prompt 2 | Soft prompt 3

Pre-trained Pre-trained Pre-trained

Pre-trained

Fine-tuned Fine-tuned

Fine-tuned
Model 1

Model 2 Model 3

Model Model Model

.-0\
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LOW RANK ADAPTATION (LORA)
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Low Rank Adaptation (LoRA) &l A\‘(IT

4

s w QK"

—{Add & Layer Norm ] x L Attn(Q, K, V') = softmax( )V
L] Vi dk‘
. MHA(x) = Concat(head;, - - - , heady, )W, head; = Attn(;l:W(j"". ;IfWFrI‘_”__ ;1:1,{{(”’] xr € Rd

( Feed Forward )

N 5

r—b(Add&LayerNorm) FFN((E) — R.eLU((BWl + b1 )W2 + bQ
4

() 3 (1) (1) (7) (2)
Wq + AW{{ ~ Wq + Wq_“,,- Wq_(hm,”
4 ) | | | .
( i j erk” + A W;., ’l ~z W;\'” T W:\'” wp : Wlk‘,) down
| ]
Q K V
4@1 D
Vo I:;£ay9§45 IvY LoRA
(2) (7) ¢ '_J‘cl'-:ti;, » 3 +
o S AW AW, ER w W w ¢ pixd
Multi-Head (i) (1) .~ mdxr '
\ N k 2/ J X Wq—up‘ Wl.'——up € R Wu c Rh‘fxd
I w  w®  cgrxdn Wi € R¥XIm, W, € Rimxd
o —aouwn o T
.x'\ .
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Low Rank Adaptation (LoRA) @

® [ntuition behind LoRA
® Pre-trained models already have good features
® Gradient updates are sparse on new tasks
® The model has only a little to learn to adapt to the new task
® The “update matrices” AW’ . AW,"” have an inherently low rank
® Reparameterization of update matrices
m AW AW, € Rixd

. Downscale. W:]l)flnu n' W;r”(!nu'n € R"x‘fh
('] /— I(IXI'
® Upscale:w,’, . W, i ER
® Low-rank r << min(d,,.d)
dp, r
dy,
T
~ d %
i i . (7) (7) - r’-rxd,
AW“] Aw;‘) | ]'J“"-:,/,, Wl ) W( ) = IR(IX' er down® W!.' down € IL"; !

qQ—up? k— ”];
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W+ AW")

Bd

W(l)+ W(’) . (')

q—up q down

wiirawd ~wl+wl . wi

k~up k—down

Wq(l)s WA(~I)‘ W{E’) ‘E Rdxdh

AW AW € Rixdn

Wl" W/. ,-Hzflx:

q—up:* up

W(” c I.r';-rxd,,

e —down

Cv ha@KIT

Compute
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Low Rank Adaptation (LoRA) &l A\‘(IT

® Reparameterization of update matrices
® During inference - Just add the update matrices to the pre-trained model

(¢)

-Lz'} : () ) (¢)

Wr} % W:/ T W:/ wup Wl/ down
i) E rla rdt ek

W.I'l- ' “/ 4 EZ “ k—up - ” A dowr

® No additional parameters - No latency
® Adapters and Prefix tuning require additional parameters
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Low Rank Adaptation (LoRA) &l ﬂ(l:r

® Reparameterization of update matrices
® During inference - Just add the update matrices to the pre-trained model
® Update matrices for different tasks can be combined by addition (Example: DreamBooth[®))

Dog in a big red bucket

“Dog” LoRA update matrices “Toy” LORA update matrices “Dog” + “Toy” LORA update matrices

.o’\
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COMPARISON OF PEFT
APPROACHES
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Comparison of Fine-tuning Approaches A\‘(IT

& Full fine-tuning uPEFT

® Pros ® Pros

2 Computationally efficient: only a
“ ESVT ggt(el_yéi gsipgzr%?g]ea:ntget he small portion of the parameters is

_ updated
given enough data ® Storage efficient
® Cons ® Fast training on consumer GPUs

® Catastrophic forgetting as many ® Cons

parameters are updated ® Requires careful engineering for a
8 Computationally infeasible for specific task

large models @ Where to put adapters
® Storage inefficient @ Howto setrin LORA
® Slow training ® How large should the prefix be

In Prefix tuning, etc.

o\
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Comparison of Fine-tuning Approaches

® Adapters and Prefix and Prompt
Tuning
® Pros

B Can “transform” the model to fit
another domain

a Example: 2D - 3D inputs

2 Cons
® Inference latency

® Adapter and additional prefix
parameters make the model
larger

@ Often not parallelizable
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2 LoRA

® Pros

® No latency — just add the learned
weights to the pre-trained model
during inference

@ Usually better performant
a Cons

@ Model architecture stays the
same - Cannot be applied on
domains from other dimensions

L
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Conclusion: Parameter-Efficient Fine-Tuning A\‘(IT

® PEFT allows to train huge models on consumer GPUs with little
performance loss

@ Different ways to achieve this:

8 Adapters, LoRA, Prefix and Prompt tuning, Partial Fine-tuning, Full Fine-
tuning

# Choice depends on the task at hand
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Constellations in Efficient Networks A\‘(IT

Contin earning Representation Learning Interpretability

vised Learning

Visual in-context legrning Vision a 'anguage
r
e
Generati Models//’ '

”
s

— | ice Visual Transformers
carefl © ometer®

Semi-supervised Learning .
<X . ap\e P L
: Swane?™ T - EfficientiNetworks
-

e OO(\

Q
O, .

Parameter-efficient
Fine-tuning

-

Interactive Segmentation
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