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EFFICIENT NEURAL 
NETWORKS

Learning with Less (Resources)
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Efficient Neural Networks

Why do we need efficient neural networks?

06.12.20245

Training on high-power clusters Inference on low-power device

Productionization
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Efficient Neural Networks

06.12.20246

Large disparity between hardware used for training and inference

Even the average gaming PC only has a quadcore CPU and a Nvidia 
GTX 1060 with 6 GB VRAM

The average notebook/smartphone is even worse than that!

A lot less powerful than server setups with >100 GB RAM and multiple 
GPUs
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Efficient Neural Networks

Additional concerns for mobile devices

Power consumption when running battery-powered

Heat generation

Model weight size when downloading over mobile networks and also when 
stored on local volume

The ImageNet-pretrained ResNet-101 weights are already 171 MB!

Might stop users from downloading and using an app

Runtime

Many applications have realtime demands, e.g. processing camera input

Mobile hardware – especially smartphones – usually has very little computational 
resources

06.12.20247
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Efficient Neural Networks

Given these concerns, we can intuitively derive the main metrics that are 
used to compare the efficiency of neural networks

Number of parameters, sometimes given as MB or kB sizes

Number of floating point calculations, usually given as FLOPs or Multiply-
Adds (sometimes called Multiply-Accumulate or MAC)

Note that many hardware accelerators can compute a Multiply-Add operation in a 
single clock cycle. 

Many researchers consider 1 Multiply-Add = 2 FLOPs. Some papers might measure 
this differently however!

Inference time as duration in seconds or throughput as frames per second

Energy Efficiency measured in Watt or Joule

06.12.20248
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EFFICIENT BUILDING BLOCKS
Faster ways to do convolution
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Efficient Building Blocks

Standard convolution: Most commonly a 3x3xDin filter kernel (h x w x Din ) 

Single spatial position: multiply & add 3x3xDin values of the input with those of the filter kernel

Example below: input volume with Hin=Win=7 and Din channels and a filter with h=w=3 and Din

channels and no padding

Outcome: h x w x Din x Hout x Wout x Dout Multiply-Add operations and h x w x Din x Dout weights

06.12.202410

A single filter evaluation at a single spatial position and a full convolution [6]
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Efficient Building Blocks

Often h=w for a filter kernel, complexity is therefore quadratic w.r.t. h (or w)

In terms of computations, h=w=3 is therefore 9 times as expensive as h=w=1!

Takeaway: 1x1 convolutions are cheap!

Problem: 1x1 filters lack spatial awareness, a CNN with only 1x1 filters would not perform well.

But: we can use 1x1 convolution to reduce the input dimension Din and apply 3x3 filters 
afterwards  the total number of 3x3 convolutions is reduced!

06.12.202411

3x3 and 1x1 convolution in comparison [6]



Deep Learning for Computer Vision II: Advanced Topics

SqueezeNet v1

1x1 convolutions extensively used in SqueezeNet v1 [5]

Basic building block is the "Fire module"

First "squeeze" input: Reduce number of channels with cheap
1x1 convolutions

Then "expand" with a combination of 1x1 (cheap) and 3x3 (spatial
information) filters

Concatenate output of 1x1 and 3x3 convolution

Lowers both computation time and parameter count

06.12.202412

Fire module from [5]

SqueezeNet architecture
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Grouped Convolution

06.12.202413

Grouped convolution [6]

Grouped convolution (sometimes called group convolution)

First introduced in AlexNet [7] in 2012, at that time more an implementation detail, nowadays 
used for speeding up networks

Main gist: divide input volume into groups. Filters only "work" on their group, in the example 
below number of groups g=2.

Each filter only has 1/g amount of work and parameters

But each filter also only sees 1/g channels and cannot work on all information

Group 1

Group 2
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Depthwise Separable Convolution

Depthwise convolution is a special case of grouped convolution with g=Din

Every filter group only filters 1 channel of the input volume. This is very cheap 
computationally and has very few parameters.

Depthwise separable convolution: depthwise convolution followed by a 1x1 convolution 
(1x1 convolution is also also referred to as pointwise convolution)

06.12.202414

Depthwise convolution [6] Pointwise convolution [6]
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Question [5 minutes]

(Reminder: standard convolution: h x w x Din x Hout x Wout x Dout Multiply-Add operations and h 
x w x Din x Dout weights)

How many Multiply-Add operations and weights do depthwise and pointwise convolutions have? Given input: Hin x Win x 
Din  output: Hout x Wout x Dout filter size: h x w x 1 (for depthwise) and 1 x 1 x Din (for pointwise)

06.12.202415

Depthwise convolution Pointwise convolution

Standard convolution
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Depthwise Separable Convolution

(Reminder: standard convolution: h x w x Din x Hout x Wout x Dout Multiply-Add 
operations and h x w x Din x Dout weights)

Depthwise part has h x w x Din x Hout x Wout Multiply-Add operations and h x w x Din

weights

Pointwise part has Din x Hout x Wout x Dout Multiply-Add operations and only Din x Dout

weights

For most inputs/outputs, even the combination of depthwise and pointwise part is more 
computationally efficient than a standard convolution

06.12.202416

Depthwise convolution [6] Pointwise convolution
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MobileNets

MobileNet v1 [9] is mostly based on depthwise separable convolution

Basic building block is indeed very basic, but has been shown to work decently for 
many different tasks

MobileNet v2 [10] expands on this basic unit and adds skip connections and inverted 
residual structures

06.12.202417

MobileNet v1 building block MobileNet v2 building blocksStacked 13 times!
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ShuffleNet

ShuffleNet [8] extensively uses grouped convolution

Problem: When only using grouped convolution, information
of the groups is never mixed (left). A red group filter would only
work on information from previous red filters.

Solution: channel shuffle layer (right). Channels
are now mixed so that the next red filter can also consider
information from the green and blue group

06.12.202418

Visualization of the grouped convolution problem and its solution

ShuffleNet units
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Efficient Building Blocks – Downsampling

For CNNs, computational demand also depends on the size h x w of the input

Filters have to be evaluated at every spatial position, which is expensive for 
large input sizes

As often h=w, there is an obvious quadratic relationship between number of 
computations and the input size

Thus, a common strategy of efficient neural networks is downsampling fast

Mostly handled by the top 2 layers ("stem cells")

Often a normal convolution with stride 2 (MobileNet v1) or a convolution with stride 2 
followed by max pooling with stride 2 (SqueezeNet, ShuffleNet)

The latter reduces the common input size of 224x224 to 56x56 in only 2 layers!

This results in only 1/16th of spatial positions w.r.t. the input image

06.12.202419
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EFFICIENT TRAINING AND 
INFERENCE

Mixed Precision, Quantization and Pruning

06.12.202420
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Mixed Precision

Commonly, neural networks are trained with 32-bit floating point (FP32) inputs and 
weight parameters

This ensures a large range of representable numbers at the cost of storage space and 
computational power

Using a smaller data type such as FP16 (half precision) would ensure more lightweight 
and more performant models and also faster training!

06.12.202421

1 8 23

1 5 10

IEEE 754 32 bit float (single precision)

IEEE 754 16 bit float (half precision)

Sign, Exponent and Mantissa
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Mixed Precision

Problem: Representable range of FP16 is small, due to 5-bit exponent and 10-bit mantissa

Gradients below 2-24 are rounded towards 0!

This actually happens quite a lot during training

06.12.202422

Histogram of activation gradient values during the training of Multibox

SSD network [13]
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Mixed Precision

Result: Training diverges with FP16 although it would have converged 
with a FP32 data type

Solution: Using a mixed precision approach with both FP16 and FP32 
while also scaling the loss to an appropriate range

06.12.202423

Image from https://docs.nvidia.com/deeplearning/performance/mixed-precision-

training/graphics/training-iteration.png

Training diverges
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Mixed Precision

Benefits of mixed precision training:

Half precision math throughput can be 2x-8x faster than single precision on modern 
GPUs

Weights stored on GPU take less space. Batch size can be increased!

Data transfers from/to the GPU are faster

Results mostly stay the same and can even increase in some cases

Easy to use in most deep learning frameworks such as PyTorch

06.12.202426

ILSVRC12 classification top-1 accuracy [13]
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Pruning

Pruning: removing redundancy/low value information from the network

Pruning starts with a "bigger/heavier" network and tries to reduce the size

Objective: Eliminate neurons or whole filters (in a CNN) while maintaining the metric 
(e.g. accuracy)

Can help to remove e.g. multiple filters that learned (almost) the same feature like edge 
detection or color features

Redundancy is actually quite common in NNs: Think about training with dropout, where 
often 50% of the values are randomly zeroed

06.12.202429
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Pruning

There is not a singular pruning strategy that always works. Many different approaches can achieve a good 
pruning ratio

However, a common setup is [17]:

Find unimportant filters according to some metric

Remove filters and adjust the filters of the subsequent layer

Finetune to "repair" the damage

Repeat until the target pruning percentage is achieved

06.12.202430

Subsequent filters have to 

be adjusted
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Pruning

How to determine which filter to remove?

Common strategies and metrics:
Sum of absolute weight values in a filter. Small weights tend to produce weak activations and do not contribute 
much. ℓ1 or ℓ2 norms are commonly used.

Average Percentage of Zeros in a filter. Considers the sparsity of a filter, many zeros = information loss

Phrasing it as an optimization problem. [17] tries to find a filter that affects the output of the following layer the least,
removes it and finetunes the network.

[18] uses an iterativ pruning approach, temporarily removing filters while monitoring the sensitivity metric of a 
detection task. Filters leading to the smallest drop are removed. No finetuning needed after every step.

Differences in pruning setups:
Iterative vs. one-shot methods: Iterative setups only remove a small amount of filters per step.

Finetuning: Iterative methods often retrain after every pruning step, others only at the end.

Structured vs. Non-structured pruning: Structured pruning removes whole filters, non-structured removes single 
weights to induce sparsity. This often requires special hard- or software to handle.

Global vs. Local pruning: Global pruning considers all filters, local e.g. only a single layer.

06.12.202431
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Constellations in Efficient Networks

Interpretability

Uncertainty

Weakly supervised Learning

Vision and Language

Generative Models

Representation Learning

Semi-supervised Learning

Parameter-efficient

Fine-tuning

Continual Learning

Visual Transformers

Efficient Networks

Interactive Segmentation

Visual in-context learning
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PARAMETER-EFFICIENT 
FINE-TUNING

06.12.202433
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Introduction to Parameter-Efficient Fine-Tuning (PEFT)

LLMs have a lot of weights  Fine-tuning is expensive

More compute – large and multiple GPUs

File size – Checkpoints (GPT-3 – 800 GB)

06.12.202434

Table taken from the DeepLearningAI 2023 workshop at https://www.youtube.com/watch?v=g68qlo9Izf0

GPU Tier $ / hr (AWS) VRAM (GiB)

H100 Enterprise 12.29 80

A100 Enterprise 5.12 80

V100 Enterprise 3.90 32

A10G Enterprise 2.03 24

T4 Enterprise 0.98 16

RTX 4080 Consumer N/A 16
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Introduction to Parameter-Efficient Fine-Tuning (PEFT)

Avoid tuning the whole model

Fine-tune only small subset of the model parameters

Allows fine-tuning large models on consumer GPUs

Difference between full fine-tuning and PEFT
Pros (PEFT): computational and storage efficiency, and less prone to catastrophic forgetting 

06.12.202435

Images taken https://medium.com/@kanikaadik07/peft-parameter-efficient-fine-tuning-55e32c60c799

Full fine-tuning PEFT
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Recap: Transformer Models [1], [2]
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PARTIAL FINE-TUNING

06.12.202437
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Partial Fine-tuning

Fine-tune part of the layers (usually the last ones)

Why could this be a potential problem for large domain shifts in inference?

December 6, 202438

Question [5 minutes]

Image source: https://ai.bu.edu/adaptation.html
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Partial Fine-tuning

Fine-tune part of the layers (usually the last ones)

Can be considered as PEFT

Does not mitigate large domain shifts

Adapters, Prompt Tuning, Prefix Tuning, and LoRA are better in practice

Adapt representation at different levels in the model

E.g. adapt low-level features in large appearance shifts

December 6, 202439

Partial Fine-tuning

Image Source: Sayeed, Mohammed Azam, et al. "Detecting Malaria from Segmented Cell Images of Thin Blood 

Smear Dataset using Keras from Tensorflow." International Journal for Research in Applied Science and Engineering Technology 8.1 (2020): 597-607.
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ADAPTERS

06.12.202440
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Adapters [2], [3]



Deep Learning for Computer Vision II: Advanced Topics

Methodology

Adapt the pre-trained model at multiple levels

Insert adapter modules between pre-trained layers

Small set of additional parameters

Fine-tune only the task-specific adapter modules

December 6, 202442

Adapters
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Adds “corrections” to the learned representations of the pre-trained model

Pre-trained model is unchanged

New tasks  New adapters!

Reduced storage and training cost compared to fine-tuning

Only need to store the pre-trained model and the small task-specific adapters

December 6, 202443

Adapters [2], [3]

Image taken from: 

https://www.leewayhertz.com/param

eter-efficient-fine-tuning/

Pre-trained 

Model

Task 1 Task 2 Task 3

Fine-tuned 

Model 1

Fine-tuned 

Model 2
Fine-tuned 

Model 3

Pre-trained 

Model

Task 1 Task 2 Task 3

Pre-trained 

Model

Pre-trained 

Model
Pre-trained 

Model

Adapter 1 Adapter 2 Adapter 3

Fine-tuning Adapter PEFT
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Adapters – Example for 2D  3D Segmentation [4]

Given a model trained to segment cats and dogs (and other standard classes)

Image taken from: https://kiansoon.medium.com/semantic-segmentation-

is-the-task-of-partitioning-an-image-into-multiple-segments-based-on-the-

356a5582370e
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Adapters – Example for 2D  3D Segmentation [4]

Given a model trained to segment cats and dogs (and other standard classes)

Adapt it to segment volumetric brain tumors

Image taken from: https://kiansoon.medium.com/semantic-segmentation-

is-the-task-of-partitioning-an-image-into-multiple-segments-based-on-the-

356a5582370e Image taken from [6]
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Segment Anything Model (SAM) [7]

Pre-trained on a large-scale 2D dataset of natural images

Works well on out-of-domain data when fine-tuned

However: 

Can it be applied to 3D medical data? 

Usually applied slice by slice (axial)

Extremely poor results

No spatial coherence in predictions

 Better: 3D convolutions!

December 6, 202446

Adapters – Example for 2D  3D Segmentation [4]

3D MRI Image of the brain viewed from 3 different axes
Image taken from: https://submissions.mirasmart.com/ISMRM2022/itinerary/Files/PDFFiles/1860.html
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Adapters at multiple locations

December 6, 202447

Adapters – Example for 2D  3D Segmentation [4]
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Adapters at multiple locations
Positional embeddings  Extend lookup table with depth 

Patch embeddings  Use pre-trained 14x14 2D convolution as 1x14x14 3D convolution

Extend with 14x1x1 depth-wise convolution to approximate 14x14x14 3D convolution

December 6, 202448

Adapters – Example for 2D  3D Segmentation [4]
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Adapters at multiple locations
Spatial Adapter

Additional depth-wise 3D convolution before up-projection

Adapters can learn 3D spatial information

December 6, 202449

Adapters – Example for 2D  3D Segmentation [4]

Spatial adapter
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Adapters at multiple locations
Mask Decoder and Point Encoder are trained from scratch with 3D convolutions

They are already lightweight and have few parameters

December 6, 202450

Adapters – Example for 2D  3D Segmentation [4]
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PREFIX TUNING

06.12.202451
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Prefix Tuning [5]
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Prefix Tuning [5]

Only update the concatenated prefixes

Intuition: Let the model learn how to “steer” itself
Prefixes encode task-specific knowledge

Why not learn which prompt works best (prompt engineering)?
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Prefix Tuning [5]

Why not learn which prompt works best (prompt engineering)?

Optimization over discrete space is not flexible

Solution is forced to choose words from the vocabulary

Model is only adapted at the input layer

Equation taken from: 

https://medium.com/@musi

calchemist/prefix-tuning-

lightweight-adaptation-of-

large-language-models-for-

customized-natural-

language-a8a93165c132

Optimal prompts (prompt engineering)



Deep Learning for Computer Vision II: Advanced TopicsDecember 6, 202455

Prefix Tuning [5]

Why not learn which prompt works best (prompt engineering)?

Optimization over discrete space is not flexible

Solution is forced to choose words from the vocabulary

Model is only adapted at the input layer

Prefix tuning:

Optimization over continuous variables directly with gradient descent
Solution is flexible and task-specific

Model is adapted in all layers

Optimal prompts (prompt engineering)

Equations taken from: 

https://medium.com/@musi

calchemist/prefix-tuning-

lightweight-adaptation-of-

large-language-models-for-

customized-natural-

language-a8a93165c132
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Adds additional context to the learned representations in the sequence

Pre-trained model is unchanged

New tasks  New prefixes!

Very similar to adapters but usually requires fewer parameters

December 6, 202456

Prefix Tuning [5]

Pre-trained 
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Fine-tuned 

Model 1
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Task 1 Task 2 Task 3
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Pre-trained 

Model

Prefixes 1 Prefixes 2 Prefixes 3

Fine-tuning Prefix Tuning PEFT
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PROMPT TUNING

06.12.202457
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Prompt Tuning (soft prompts) [10]
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Adds additional context to the inputs in the sequence

Instead of the intermediate representations

Pre-trained model is unchanged

Similar to prefix tuning but only at input level

Soft prompts  Continuous values

December 6, 202459

Prompt Tuning (soft prompts) [10]

Pre-trained 
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Task 1 Task 2 Task 3

Fine-tuned 

Model 1
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Fine-tuned 
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Model

Soft prompt 1

Fine-tuning

Prompt Tuning PEFT

Soft prompt 2 Soft prompt 3

Input 1 Input 2 Input 3
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LOW RANK ADAPTATION (LORA)

06.12.202460
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Low Rank Adaptation (LoRA) [8]
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Low Rank Adaptation (LoRA) [8]

Intuition behind LoRA

Pre-trained models already have good features

Gradient updates are sparse on new tasks

The model has only a little to learn to adapt to the new task

The “update matrices”                        have an inherently low rank

Reparameterization of update matrices

Downscale:

Upscale:

Low-rank
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Low Rank Adaptation (LoRA) [8]

Reparameterization of update matrices

During inference  Just add the update matrices to the pre-trained model

No additional parameters  No latency 

Adapters and Prefix tuning require additional parameters 
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Low Rank Adaptation (LoRA) [8]

Reparameterization of update matrices

During inference  Just add the update matrices to the pre-trained model

Update matrices for different tasks can be combined by addition (Example: DreamBooth[9])

Dog in a big red bucket

“Dog” LoRA update matrices

Superman, close-up portrait

“Toy” LoRA update matrices “Dog” + “Toy” LoRA update matrices

Dog, close-up portrait
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COMPARISON OF PEFT 
APPROACHES

06.12.202465
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Full fine-tuning

Pros

Completely adapts model to the 
new task – best performance 
given enough data

Cons

Catastrophic forgetting as many 
parameters are updated

Computationally infeasible for 
large models

Storage inefficient

Slow training

December 6, 202466

Comparison of Fine-tuning Approaches

PEFT
Pros

Computationally efficient: only a 
small portion of the parameters is 
updated

Storage efficient

Fast training on consumer GPUs

Cons
Requires careful engineering for a 
specific task

Where to put adapters

How to set r in LoRA

How large should the prefix be 
in Prefix tuning, etc.
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Adapters and Prefix and Prompt 
Tuning

Pros

Can “transform” the model to fit 
another domain

Example: 2D  3D inputs

Cons

Inference latency

Adapter and additional prefix 
parameters make the model 
larger

Often not parallelizable

December 6, 202467

Comparison of Fine-tuning Approaches

LoRA

Pros

No latency – just add the learned 
weights to the pre-trained model 
during inference

Usually better performant 

Cons

Model architecture stays the 
same  Cannot be applied on 
domains from other dimensions
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PEFT allows to train huge models on consumer GPUs with little 
performance loss

Different ways to achieve this:

Adapters, LoRA, Prefix and Prompt tuning, Partial Fine-tuning, Full Fine-
tuning

Choice depends on the task at hand

December 6, 202468

Conclusion: Parameter-Efficient Fine-Tuning
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Constellations in Efficient Networks

Interpretability

Uncertainty

Weakly supervised Learning

Vision and Language

Generative Models

Representation Learning

Semi-supervised Learning

Parameter-efficient

Fine-tuning

Continual Learning

Visual Transformers

Efficient Networks

Interactive Segmentation

Visual in-context learning
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