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Abstract

Anomaly detection has applications in a variety of do-
mains: network intrusion detection [1], video surveillance
[9] and medical diagnosis [16]. The main idea of anomaly
detection is to model normal behavior and detect devia-
tions from it, e.g. monitoring rarely occurring accidents
on a video camera. This paper evaluates reconstruction-
based methods [16] and an embedding similarity-based
method [4] for anomaly detection on images from construc-
tion sites. We show that both types of methods can achieve
good classification performance on a clean dataset, but ap-
plying them on a noisy dataset results in poor performance.
To try to alleviate this issue, two cleaning methods have
been applied to the noisy dataset.

1. Introduction
Anomaly detection is a method that aims to identify data

samples which differ from normal behavior. For this pur-
pose, a model first needs to learn what a normal sample
looks like and detect deviations from that. The method has
a variety of applications, including network intrusion de-
tection, video surveillance and diagnosis in the medical do-
main. The methods used in this paper focus on surface in-
spection, specifically for detection of cracks in images taken
at construction sites. Figure 1 shows exemplary normal and
abnormal images from the Concrete-Cracks dataset [17].

There were two tasks to perform: anomaly classification
and localization. Firstly, a given image needs to be classi-
fied as normal or abnormal, and if there is a crack it needs to
be localized. To achieve these tasks, the models presented
in this paper are trained only on images without cracks. Ab-
normal samples can be detected if their predicted anomaly
score exceeds a certain threshold.

Figure 1. Normal and abnormal examples from the Concrete-
Cracks dataset [17]

2. Related Work

A wide variety of methods can be applied for anomaly
detection. Ruff et al. [11] group them into four categories:
one-class classification, probabilistic, reconstruction-based
and distance-based methods. Traditional shallow ap-
proaches include for example k-nearest neighbor and k-
means.

Novel deep learning approaches like Autoencoder (AE)
and Generative Adversarial Networks (GAN), as well as
their variants have been rising in interest for different ap-
plications. For example, Baur et al. [2] and Zimmer et al.
[16] employed autoencoders to detect anomalies in Brain
MR Images. Schlegl et al. [13] used a GAN to model nor-
mal retinal OCT images.

A different approach are embedding similarity-based
methods that try to model what normality looks like in each
patch of an image, like PaDiM [4] or SPADE [3].

3. Methods

This section presents two reconstruction-based meth-
ods, the Variational Autoencoder (VAE) and a U-Net-based
VAE, as well as the PaDiM framework. Appendix A shows
the architecture of AnoVAEGAN [2].
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Figure 2. The architecture of the vanilla VAE

3.1. Reconstruction-based methods

Reconstruction-based methods are widely used for un-
supervised anomaly detection. Their goal is to train a neu-
ral network which can reconstruct normal data samples but
fail to reconstruct abnormal data samples. Using the recon-
struction error, which is the difference between the original
sample and the reconstructed sample, a classification as nor-
mal or abnormal can be performed. In addition, by taking
the reconstruction error for example in sliding windows, it
is also possible to achieve anomaly localization [16].

3.1.1 Variational Autoencoder

In Figure 2 the architecture of Variational Autoencoder [16]
is shown. A VAE is composed out of an encoder and a de-
coder. The encoder compresses the input samples into a
latent space and the decoder reconstructs original samples
based on their latent representation. The model is optimized
by minimizing the loss function, which is the sum of the
reconstruction error and the Kullback–Leibler divergence
(KL-divergence). The KL-divergence is a measurement of
similarity between the latent distribution and an imposed
prior distribution, which is generally a standard normal dis-
tribution. The loss function L is defined as

L = −DKL(q(z|x)||p(z)) + Eq(z|x)[log p(x|z)] (1)

where p(z) is the prior distribution of the latent space and
q(z|x) and p(x|z) are the probability distribution of the en-
coder and the decoder, respectively [16].

3.1.2 U-Net-based VAE

The U-Net-based VAE uses skip connections between the
encoder and decoder, similar to the U-Net architecture [10].
With these connections the information can be propagated
directly from the input to the output and the spatial infor-
mation in the output images can be preserved. In this paper
we only add skip connections between the last two layers of
the encoder and decoder, because the number of added skip
connection also influences the reconstruction performance
of the model. With an increasing amount of skip connec-
tions, the quality of the reconstruction improves a lot but the

Figure 3. The architecture of the PaDiM framework [4]

downside is that this behavior can also be observed for ab-
normal images. This results in a degrading performance for
anomaly detection because the reconstruction error between
normal and abnormal samples is no longer significantly dif-
ferent. Therefore the model can no longer distinguish be-
tween normal and abnormal.

3.2. Patch Distribution Modeling Framework

The second method that was used for the anomaly de-
tection is called Patch Distribution Modeling Framework
(PaDiM) [4]. In Figure 3 the architecture of PaDiM is
shown. It consists out of a convolutional neural network
(CNN), which is pre-trained on the ImageNet dataset [12].

3.2.1 Training of PaDiM

Each sample of the N training samples is used as an in-
put for the pre-trained CNN. From these inputs, the feature
embeddings from the first three layers of the CNN are ex-
tracted. The first layer outputs a feature embedding of size
H ×W × C, where H and W are the height and width of
the embeddings and C is the number of channels in this first
layer. The height and width values determine the number
of patches PaDiM will use. For each one of these H ·W
patches, a multivariate gaussian distribution is modelled,
which indicates what normality looks like in the respective
patch [4].

For the calculation of the distributions, the N extracted
feature embeddings from the three layers of the CNN are
concatenated. For a patch at position (i, j), 1 ≤ i ≤W, 1 ≤
j ≤ H , only the slice of the embedding that corresponds to
this patch, Xij , is used for the calculation of the distribu-
tion. This can be seen in Figure 3, where the patch and its
corresponding slices are highlighted in red. To determine
N (µij ,Σij), we calculate µij as the sample mean of Xij

and Σij is calculated as

Σij =
1

N − 1

N∑
k=1

(xk
ij − µij)(x

k
ij − µij)

T + εI (2)
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where xk
ij is the slice of the embedding at patch (i, j)

from training image k and εI is a regularisation term to
make Σij a full rank matrix and invertible [4].

The authors of PaDiM stated that not all channels of each
embedding layer have to be used as this is computationally
and memory intensive. Instead, randomly selecting only a
subset of all channels across the three layers has proven to
be nearly as good as using all of them, while decreasing the
complexity for training and testing time [4].

3.2.2 Inference

During inference, the test images are used as an input for the
pre-trained CNN and the feature embeddings are extracted.
Then a score map for each image is created. This is done,
by calculating the Mahalanobis distance [8] per patch. Let
xij be the embeddings for patch (i, j) of the test images
andN (µij ,Σij) is the learned distribution of PaDiM at that
patch. Then we compute the distance M(xij) as

M(xij) =
√
(xij − µij)

TΣ−1ij (xij − µij)[4]. (3)

A large distance M(xij) means, that the corre-
sponding patch is likely abnormal. Therefore M =
(M(xij))1≤i≤W,1≤j≤H forms the anomaly map for an in-
put image. To classify the whole image, we take the max-
imum of M and if it exceeds a certain threshold, then the
image is considered an anomaly [4]. Choosing the thresh-
old is considered a hyperparameter.

4. Evaluation
This section presents the evaluation of the

reconstruction-based methods and the PaDiM frame-
work on two datasets: Concrete-Cracks [17] and the
SDNet2018 [7]. Issues which were encountered with
the SDNet2018 dataset are elaborated and results from
attempted solutions are also provided.

4.1. Datasets

The Concrete-Cracks dataset has a single category, while
SDNet2018 has three: decks, pavements and walls. The im-
ages in the datasets are labeled as abnormal or normal, i.e.
images with or without cracks, but bounding boxes or seg-
mentations of the cracks are not available. The dataset splits
are as follows: 65% for training, 15% for validation and
20% for testing. The datasets were originally introduced for
classification, but were repurposed for anomaly detection.

4.2. Evaluation method

All of the presented methods are trained only on normal
samples. We trained the VAE with a latent space dimen-
sionality of 128. The encoder and decoder have 5 layers

Model AUROC
Vanilla VAE 0.93
U-Net-based VAE 0.97
ResNet18-100/-200 0.96 / 0.98
WideResNet50-2-100/-200 0.97 / 0.97
EfficientNet-B5-100/-200 0.97 / 0.98

Table 1. AUROC for reconstruction-based methods and PaDiM on
Concrete-Cracks. Reconstruction-based methods are the VAE and
U-Net-based VAE. For PaDiM, three backbones were used and
two different amounts of embeddings per patch, 100 and 200.

each, starting with 32 kernels at layer 1 and doubling in
each layer. Our models were trained for 30 epochs using
the Adam optimizer [6] with a learning rate of 0.005 and
batch size of 32.

PaDiM models require only a single iteration through
the normal samples. The embedding dimensions are cho-
sen at random in each run and remain the same for the
whole experiment. Two hyperparameters were evaluated.
As backbones, ResNet18 [5], Wide-ResNet50-2 [15] and
EfficientNet-B5 [14] were used. The number of embedding
dimensions was set to 100 or 200 per patch, as using the full
embedding vector can lead to memory issues.

For evaluation, the receiver operating characteristic
(ROC) curve is calculated from both the normal and ab-
normal test set, and the area under the ROC curve (AU-
ROC) is used to compare our models. The intersection over
union (IOU) metric is normally better suited, but requires
ground truth segmentations, which are not available in the
two datasets.

The ROC curve is generated based on the anomaly scores
of the images, i.e. the mean pixelwise difference in case
of the VAE models, and the anomaly score maps in the
PaDiM case. For the VAE, the threshold which maximizes
the difference between true and false positives is selected,
and for PaDiM, the threshold that maximizes the F1 score
is used. Samples with anomaly scores higher than the gen-
erated threshold are identified as anomalies. For PaDiM the
threshold is used for creating the binary mask and will have
an impact on the segmentation result as well.

4.3. Evaluation on the Concrete-Cracks dataset

The performance of reconstruction-based models, as
well as the PaDiM models with different backbones and
number of embedding dimensions are shown in Table 1. It
can be seen that all methods achieved good performance
with AUROC close to 1.00, meaning they can easily distin-
guish between the two classes.

4.4. Evaluation on SDNet2018 Dataset

In Table 2 the mean AUROC from 5 experiments for
the reconstruction-based methods and PaDiM with dif-
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Model Mean AUROC
Vanilla VAE 0.51
U-Net-based VAE 0.52
ResNet18-100/-200 0.63 / 0.64
WideResNet50-2-100/-200 0.63 / 0.63
EfficientNet-B5-100/-200 0.67 / 0.67

Table 2. Mean AUROC over 5 experiments for reconstruction-
based methods and PaDiM on SDNet2018. Reconstruction-based
methods are the VAE and U-Net-based VAE. For PaDiM, three
backbones were used and two different amounts of embeddings
per patch, 100 and 200.

ferent backbones and number of embeddings is shown.
Reconstruction-based methods achieved low performance
with AUROC close to 0.50, meaning they can hardly dis-
tinguish between normal and abnormal samples. In com-
parison to that, the PaDiM models showed an improvement
with a mean AUROC of up to 0.67.

Figure 4 show the reconstruction and the pixelwise dif-
ference from the U-Net-based VAE for a normal and ab-
normal sample from the SDNet2018 dataset. Firstly, it can
be seen that the small hole in the normal sample is not re-
constructed and appears in the pixelwise difference. This
results in an increased anomaly score although the hole is
considered a normality. Secondly, the crack in the abnormal
image could not be reconstructed, which is beneficial to our
approach, but since the cracks in the SDNet2018 dataset can
be very small they do not contribute much to the anomaly
score of a sample. Therefore, it is hard to find an appro-
priate threshold to distinguish the two classes. A similar
behavior can also be observed with PaDiM which considers
the small holes as anomalies as well. A false positive and a
true positive example can be found in Appendix B.

Figure 4. Normal sample (top) and abnormal sample (bottom)
from SDNet2018 reconstructed by a U-Net-based VAE, as well as
the pixelwise difference between the original and the reconstructed
image.

PaDiM-ResNet18-100 # on Vanilla
SDNet

# on cleaned
SDNet

SDNet2018 0.63 -
SDNet2018 cleaned 0.64 0.67

Table 3. Mean AUROC results over 5 experiments for PaDiM-
ResNet18-100 on the vanilla SDNet2018 and VAE cleaned ver-
sions

4.5. SDNet2018 challenges

Both types of evaluated methods experienced difficulties
with the SDNet2018 dataset. It appears to be noisy and un-
clean, and has three categories of which the pavement cat-
egory differs the most. Our models falsely recognize cer-
tain objects as anomalies. Moreover, many images contain
hardly visible cracks. Therefore, the models cannot find
a proper threshold which separates the two classes. This
threshold choice also has an impact on the resulting seg-
mentations in PaDiM.

4.6. Attempted solutions

We attempted to automatically clean the SDNet2018
dataset using a U-Net-based VAE, which was pre-trained
on Concrete-Cracks. Each image from the SDNet2018 is
assigned an anomaly score, which is the prediction of the
VAE. The normal images that lie within the highest 10%
of the scores are deleted, as many of these are consid-
ered abnormal by the VAE. The abnormal images that lie
within the lowest 10% of the scores are also cleaned out,
as many of them contain hardly visible cracks. The perfor-
mance comparison between models trained on the vanilla
SDNet2018 and the cleaned version, are shown in Table 3.
After the cleaning, the mean AUROC over five experiments
for PaDiM-ResNet18-100 is improved from 0.63 to 0.67.

We also tried to clean the dataset using a thresholding
method but that had no improvement in the performance of
PaDiM. The method is explained in Appendix C.

5. Conclusion
In this paper we applied reconstruction-based meth-

ods and an embedding similarity-based metho for anomaly
detection in construction sites. Both methods achieved
good performance on the Concrete-Cracks dataset, while
the SDNet2018 dataset turned out to be more difficult.
Reconstruction-based methods were not able to achieve
good results on it. The PaDiM models showed some im-
provements and the performance could be further increased
by using different backbones, increasing the number of em-
bedding dimensions or through dataset cleaning.

As a future work, manual cleaning of the SDNet2018
dataset could be attempted, which we think could greatly
improve the performance of both types of methods. In addi-
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tion, a better choice of the threshold could be used in PaDiM
to receive better segmentations. These segmentations could
then also be applied in a weakly supervised manner, for ex-
ample by adding a small amount of anomaly samples to the
training and using their segmentations as ground truths.
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A. AnoVAEGAN
AnoVAEGAN is a combination of a VAE and a GAN.

Both the VAE and the GAN have individual drawbacks. The
reconstructed images of Autoencoders are often blurry and
the training of a GAN is generally unstable, although the
quality of the reconstructions are high. To avoid these prob-
lems both concepts can be combined into AnoVAEGAN
[2]. The AnoVAEGAN framework consists of an encoder, a
decoder and a discriminator. The VAE is used to reconstruct
input samples and the discriminator is used to discriminate
its input as either real or reconstructed. The framework is
optimized by using two loss functions. The loss function for
the VAE, LV AE , and the loss function for the discriminator,
LDis, are defined as

LV AE = λ1Lrec + λ2Lprior + λ3Ladv

= λ1‖x− x̂‖1 + λ2DKL(z||N (0, I))

− λ3 log(Dis(Dec(Enc(x))))

(4)

LDis = − log(Dis(x))−log(1−(Dis(Dec(Enc(z)))) (5)

[2]. The VAE is trained using a weighted sum of the
reconstruction error, the KL-divergence and the adversarial
error. The meaning of the first two terms is similar to
its usage in the vanilla VAE. The third term forces the
decoder to generate images that are likely to deceive the
discriminator. Meanwhile the discriminator is trained to
distinguish between real and reconstructed samples.

B. PaDiM on SDNet2018
In Figure 5, a true positive and a false positive example is

shown that was created using PaDiM with an EfficientNet-
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Figure 5. False positive (top) and true positive (bottom) from SD-
Net2018 classified by PaDiM-EfficientNet-B5-200

PaDiM-ResNet18-
100

# on Vanilla
SDNet

# on cleaned
SDNet

SDNet2018 0.63 -
SDNet2018 cleaned
stddev

0.64 0.64

SDNet2018 cleaned
percentile

0.63 0.64

Table 4. Mean AUROC results for PaDiM with a ResNet18 as the
backbone on the vanilla SDNet2018 and the threshold cleaned ver-
sions

B5 backbone and 200 as the number of embeddings per
patch. The threshold that is generated is not as strict as
in the Concrete-Cracks case and achieves better overall
anomaly localization. However, similar to the U-Net-based
VAE, the PaDiM model falsely assigns high anomaly scores
to certain objects such as small holes and boundaries be-
tween differently colored surfaces. The true positive im-
age shows that in some cases anomalies can be visualized
well. However, the issue with hardly visible cracks persists
and some of them might not be detected well even on the
heatmap.

C. SDNet2018 Threshold Cleaning
As PaDiM tries to model normality using the normal

training images, we suspect that having a very clean dataset
is crucial to the model performance. Since the SDNet2018
does not provide that, we try to automatically clean it by
using a thresholding method which is done per category of
the SDNet2018 individually. For each image in the current
category the pixel-wise mean is calculated and saved to a
list. Then a lower and an upper threshold is calculated and
used to delete images from the list that are below the lower
threshold and above the upper threshold. We evaluated two
choices of choosing the thresholds. The first choice is tak-
ing the mean µ of the list of pixel-wise means as well as the
standard deviation σ and calculate the thresholds as µ ± σ.
The second choice is selecting the lower and upper thresh-
olds so that the lowest 5% and highest 5% of the images are
deleted.

Figure 6. Deleted normal images from SDNet2018 using the clean-
ing method with the percentile threshold

In Table 4 the AUROC scores are presented for the
vanilla SDNet2018 and the cleaned versions using PaDiM
and a ResNet18 as a backbone. The results show that using
a thresholding method to clean the dataset is not working to
the extent that it is beneficial to PaDiM or they show that
PaDiM in general cannot perform well on this dataset.

Some of the deleted normal images are visualized in Fig-
ure 6. Clearly, some of these images should not be included
in the training, for example the ones that contain the black
foil, as they cannot be used to learn the normality of con-
crete surfaces. One downside of the automatic cleaning is,
that normal images which would be beneficial to training
like the ones in the top row, get deleted as well. Therefore a
manual cleaning approach would be better suited.
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