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Abstract— We present a novel approach for pedestrian in-
tention recognition for advanced video-based driver assistance
systems using a Latent-dynamic Conditional Random Field
model. The model integrates pedestrian dynamics and situa-
tional awareness using observations from a stereo-video system
for pedestrian detection and human head pose estimation. The
model is able to capture both intrinsic and extrinsic class
dynamics. Evaluation of our method is performed on a public
available dataset addressing scenarios of lateral approaching
pedestrians that might cross the road, turn into the road or stop
at the curbside. During experiments, we demonstrate that the
proposed approach leads to better stability and class separation
compared to state-of-the-art pedestrian intention recognition
approaches.

I. INTRODUCTION

The field of Advanced Driver Assistance Systems (ADAS)
gets strong interests in present days. There are several rea-
sons, namely increasing computational power of embedded
platforms or emerging technologies in the sector of intel-
ligent sensors like video, radar, laser or ultrasonic. During
the past years video-based driver assistance systems build
up a strong growing market because of their wide functional
applications on low costs. Especially, the static improving
performance for video-based pedestrian detection resulted
in first commercial active pedestrian protection systems
available for a wide range of vehicles, e.g. Mercedes Benz,
Volvo and VW. Those kind of systems try to avoid collisions
in dangerous situations involving an inattentive driver and
pedestrian by triggering an autonomous braking. One of the
most challenging task is to interpret situations with lateral
approaching pedestrians correctly. Due to the high variability
of movement patterns, pedestrians can change their walking
direction within a short time period or suddenly start or stop.
Therefore, existing systems are designed in a conservative
way by decreasing benefit in order to reduce potential false
activations that could result in consequential damages involv-
ing other traffic participants. To cope with this situation, a
reliable pedestrian intention recognition and path prediction
states a great value. This work focuses on a reliable intention
recognition for pedestrians walking along or towards the road
curbside on their way to cross, stop or just moving on in
the same direction. Pedestrian candidates are detected by a
stereo-video system mounted behind the windshield of an
approaching vehicle. Motivated by scientific evidence about
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pedestrian behavior in daily traffic situations [9], [16], [18],
intention decisions will be made by two dominant factors.
Firstly, the pedestrian dynamics by means of predicted lateral
and longitudinal velocity components as a result of a linear
dynamical system. Secondly, the pedestrian’s awareness of
an oncoming vehicle with the help of observing the human
head pose. See Fig. 1 for a rough overview about our system.
We propose a latent-dynamic discriminative model for time-
series, that is able to integrate all these features, to learn
inner connections within a specific type of scenario and
external correlations between different types of scenarios.
Our approach can be easily integrated into an overall system
as an indicator for pedestrian path prediction helping to
estimate potential future pedestrian states.

II. RELATED WORK

In this section we list the main recent contributions on
pedestrian intention recognition and the closely related field
of pedestrian path prediction. Most of them build upon an ex-
isting system for video-based pedestrian detection (see [4] for
a survey). The main focus here is to address the situation of
lateral approaching pedestrians. As accident statistics show
([14]) this covers the main scenario of accidents involving
vehicles and pedestrians. [11] for example, proposed two
non-linear, higher order Markov models to estimate whether
an approaching pedestrian will cross the street or stop at
the curbside. First a Probabilistic Hierarchical Trajectory
Matching (PHTM) is used to match an actual observation
of a pedestrian track with a database of trajectory snippets.
Using the information of future locations and pedestrian
behavior from the best matching snippets future pedestrian
motion is extrapolated. In addition, a Gaussian Process
Dynamical Model (GPDM) which models the dense flow
for walking and stopping motions is suggested to predict
future flow fields. Both suggested models integrate features
that capture pedestrian positions and dynamics by means of
dense optical flow. For path prediction only [19] analyzed
the usability of different linear dynamical systems involving
Kalman filters and interacting multiple models to predict
future pedestrian positions by propagating pedestrian states
for a small time slot of 1 second. All these models only
try to access features from pedestrian moving dynamics
but do not take the underlying context into account. Ini-
tially, [12] presented a Dynamic Bayesian Network (DBN)
on top of Switching Linear Dynamic System (SLDS), where
they integrate contextual information using latent information
from pedestrian awareness, the pedestrian position w.r.t the
curbside and the criticality of the underlying situation. A
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Fig. 1. System Overview. Pedestrians are detected and tracked by a stereo generic obstacle detection approach verified by gray-value based classifier. For
each pedestrian the orientation will be estimated. All previous information is input for the intention recognition module.

SLDS uses a top-level discrete Markov chain to select per
time step the system dynamics of the underlying LDS.
Whereas SLDSs can account for changes in dynamics, a
switch in dynamics will only be detected after sufficient
observations contradict the currently predominant dynamic
model. To forecast pedestrian behavior the model should
include possible causes for change. Therefore, they use the
expected point of closest approach, presented in [1]. To
account for inattentive pedestrians they extract features from
the human head pose inspired by the work of [9]. Pedestrian
head pose estimation was handled for example by the works
of [3], [5] and [21]. At the end an existing system for curb
stone detection is used to determine, whether a pedestrian is
at the curbside or too far away to state a risk.

In this work we investigate the use of Latent-dynamic
Conditional Random Fields (LDCRF) for the task of inten-
tion recognition in different scenarios. [15] first introduced
LDCRF models as an extension of conventional Conditional
Random Fields (CRF) [13] by adding a layer of hidden latent
states. These hidden state variables can model the intrinsic
sub-structure of a specific class label and capture extrinsic
dynamics between different classes. Furthermore, LDCRFs
proved to outperform typical CRF models, the well-known
Hidden Markov Models (HMM) and conventional machine
learning algorithms like Support Vector Machines (SVMs) in
the field of gesture recognition. See Fig. 2 for a simplified
version of a LDCRF. Therefore a benefit of our model is the
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Fig. 2. LDCRF for 2 classes with 2 hidden states per class label.
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fact that it can work with time series of arbitrary lengths,
where additional confidence can be retrieved over temporal
integration. By the nature of our LDCRF model it is also
possible to capture dynamical changes for single features,
like head turnings or different movement behaviors. Different

connections of features can be learned automatically from
training data but nevertheless, expert knowledge still can be
brought in when designing the structure of the LDCRF. We
address a wide range of scenarios including also pedestrians
that initially are walking along the sidewalks but then bend
in towards the road. The output of our approach can also be
easily used for controlling the switching states of the SLDS
presented in [12].

III. LATENT-DYNAMIC CONDITIONAL RANDOM
FIELDS FOR PEDESTRIAN INTENTION

RECOGNITION
The task of action-/intention recognition is to find a se-

quence of labels y = {y1, y2, . . . , yT } that best explains the
sequence of observations X = {x1,x2, . . . ,xT } for a total
of T time steps. LDCRF takes root in Conditional Random
Fields [13], which is one of famous activity recognition
models that can capture extrinsic dynamics between the class
labels. As Fig. 2 shows, a LDCRF as an undirected graph
consisting of sequential variable pairs of state variables xt
and class labels yt plus an additional layer of hidden, non-
observable variables H = {h1,h2, . . . ,hT }, on every time
step. Using a larger set of observations as training data, the
LDCRF is able to learn an intention recognition model and
given a new observation sequence X = {xt}t=1,...,T to infer
the intention labels y = {yt}t=1,...,T . Each ht is member
of a set Hyt of possible hidden states for the intention label
yt ∈ {1, 2, . . . , L}, where L is the number of intention labels.
For different labels, we restrict the model to have disjoint
sets of hidden states Hyt . We define H to be the union of
all Hyt sets, i.e. H =

⋃
yt
Hyt . So all possible hidden states

are contained in H. The LDCRF defines a latent conditional
model as

P (y|X;θ) =
∑
H∈H

P (y, H|X;θ), (1)

resulting in

P (y|X;θ) =
∑
H∈H

P (y|H,X;θ)P (H|X;θ), (2)

where θ contains the parameters of the model. By definition,
for sequences having any ht /∈ Hyt it holds P (y|H,X;θ) =
0 and the model Eq. 2 can be simplified to

P (y|X;θ) =
∑

H:∀hj∈Hyj

P (H|X;θ), (3)

Identical to the usual CRF formulation, P (H|X;θ) can be
defined as

P (H|X;θ) =
1

Z(X,θ)
exp

(∑
k

Fk(H,X)

)
, (4)



with the partition function

Z(X,θ) =
∑
H

exp

(∑
k

Fk(H,X)

)
. (5)

The feature functions Fk(H,X) can be written as a linear
combination of state functions sl(ht, X, t) and transition
functions tm(ht,ht−1, X, t)

Fk(H,X) =

T∑
t=1

{∑
l

λlsl(ht, X, t)

+
∑
m

µmtm(ht,ht−1, X, t)

}
, (6)

with
θ = {θk}k = {λ1, . . . , λl} ∪ {µ1, . . . , µm}. (7)

State functions sl depend on a single hidden variable and
observations in the model while transition functions tm
depend on pairs of hidden variables. The number of state
functions, sl, will be equal to the dimension of the feature
vector d times the number of possible hidden states. With
the L intention labels for our model and assuming M hidden
states per label, the total number of state functions, sl, and
total number of associated weights λl will be d × L ×M .
For each hidden state pair (h′,h′′), the transition function
tm is defined as

tm(ht−1,ht,x, t) =

{
1, if ht−1=h′ and ht=h′′

0, otherwise
. (8)

The weights µm associated with the transition functions
model both the intrinsic and extrinsic dynamics. Weights
associated with a transition function for hidden states that are
in the same subset Hyt will model the substructure patterns,
while weights associated with the transition functions for
hidden states from different subsets will model the external
dynamic between intention labels.

A. Learning the model parameters

Our training set consists of n labeled sequences (Xi,yi),
i = 1 . . . n. Following [13] and [15], we use the objective
function

L(θ) =

n∑
i=1

logP (yi|Xi,θ)−
1

2σ2
‖θ‖2 (9)

to learn the optimal parameter set θ∗. Eq. 9 combines
the conditional log-likelihood of the training data with the
log of a Gaussian prior with variance σ2, i.e., P (θ) ∼
exp( 1

2σ2 ‖θ‖2). The optimal parameter values under the
criterion θ∗ = argmaxθ L(θ) can be found by gradient
ascent using the belief propagation technique. To save space
we refer to [15] for further details.

B. Inference

To test a previously unseen sequence X , the most probable
label sequence y∗ will be estimated that maximizes the
trained model using the optimal parameter values θ∗:

y∗ = argmax
y

P (y|X,θ∗), (10)

Applying Eq. 3 once again, we get

y∗ = argmax
y

∑
H:∀ht∈Hyt

P (H|X,θ∗). (11)

To predict the label y∗t of frame t, the marginal probabilities
P (ht = h|X,θ∗) are calculated for all possible hidden states
h ∈ H. Single marginal probabilities are summed according
to the disjoint sets of hidden states Hyt . Finally, the label
associated with the optimal set is chosen.

C. Feature Computation

Here, we present the set of features we are using for
pedestrian intention recognition. [9], [16] and [18] describe
dominant features to recognize persons’ intention during road
crossing events. We try to derive most of these features
using the measurements from an on-board stereo-video based
object detection and head pose estimation system. Features
are extracted for each frame an concatenated into a time-
series of T frames as an input for our LDCRF model.

1) Pedestrian dynamics (Pos + Vel): Detected pedestrians
will be tracked in lateral and longitudinal direction using
a Kalman filter [2]. We assume a simple CV model for
pedestrians. See [19] for details. As measurements we take
the pedestrian image bounding box plus an additional median
disparity value calculated over the upper pedestrian body.
Vehicle dynamics are incorporated into the dynamical model
for ego-motion compensation similar to [10] and [19]. As a
result, we get the pedestrians filtered relative world positions
wrt. the ego vehicle (x, z) and the absolute velocities (vx, vz)
in lateral and longitudinal direction, for each frame.

2) Pedestrian head pose (Hp): To capture the pedestrians’
awareness of an oncoming vehicle the human head pose
gives a dominant cue [9], [16]. We build upon a system
presented in [20], that tries to estimate pedestrian head
poses in monocular gray value images. The basic idea is
to train multiple classifiers for different head pose classes
related to a specified pan angle range. Furthermore, the
single head pose estimation results are filtered for usage in
video sequences by implementing a particle filter [21]. To
more robustly guide the particles around future head regions,
depth information within a detected pedestrian bounding
box as well as the estimated human movement direction is
incorporated (see [5]). Hence, for a given pedestrian track the
continuous head pan angle ω ∈ [−180, 180) will be extracted
for each frame, where ω = 0◦ relates to a frontal face.

3) Formation of a time-series: For a video sequence the
above mentioned features will be integrated into a time-series
of observations. A time-series X over T frames can be then



defined as

X = {(x(1), z(1), v(1)x , v(1)z , ω(1)), . . . ,

(x(T ), z(T ), v(T )
x , v(T )

z , ω(T ))}. (12)

IV. EXPERIMENTAL RESULTS

A. Evaluation Dataset

[19] presented a new dataset containing labeled stereo-
video images. The images recorded at 16 fps show different
situations of persons approaching the curb. Ground truth is
provided by means of labeled pedestrian bounding boxes,
distance measurements estimated from calculated disparity
maps and ego-motion data from on-board inertial sensors.
For pedestrian path prediction the so called ”time-to-event”
(TTE, in frames) is labeled, identifying, when a person is
crossing, starting to cross, bending in or stopping at the curb.
In total 36 training and 32 test scenarios were recorded.
Figure 3 shows a one of the evaluated images. We also

Fig. 3. Bending In scenario, Daimler dataset [19]

address the scenario of a walking pedestrian on the sidewalk,
which we call ”straight”. ”straight”-samples are extracted
out of ”bending-in”-scenarios with an adequate time distance
to the turning event. Without loss of generality, we restrict
our system to lateral approaching pedestrians from to right
side. There is one sample in the training set and testing set
respectively, where a pedestrian is crossing from the left side.
We overcome this problem and convert both samples into
right-to-left-crossings by inverting the extracted features for
lateral position, lateral velocity and head pose. Additionally,
the contained samples for ”starting”-scenarios are ignored
for further evaluation. If we take all data together into an
overall set we get the distribution over addressed scenarios
displayed in TABLE I.

TABLE I
DISTRIBUTION OF SEQUENCES PER SCENARIO

scenario bending in stopping crossing straight
number of sequences 23 17 18 20

B. Setup

We reprocessed the sequences and calculated the features
mentioned in Sec. III-C. Similar to [11] we add a uniform
noise of up to 10% of the original height of the labeled
bounding boxes to their height and center to simulate real-
world performance. To capture the pedestrians awareness
of the underlying scene, continuous head pose angels are
calculated using the algorithms of [20] and [21]. For each of
8 discrete head pose classes we trained boosting cascades
including MCT-Features [6] on a large set of manually

labeled pedestrian head images (≈2300 per class). For a
rough comparison, pedestrian dynamics are captured using a
similar approach to PHTM [11], where motion histogram
features are extracted from dense optical flow. We use a
public available version of the TV-L1 flow [22],[17]. Ve-
hicle ego-motion compensation is achieved by applying an
efficient and highly accurate algorithm for visual odome-
try [7]. In [11] only flow vectors inside a pedestrian depth
mask contribute to the histogram calculation. Therefore, we
compute disparity maps over whole frames using the method
of [8]. Facing the problem of a very low number of samples
we perform leave–one–out cross–validation (LOO). We train
One-Vs-One-Classifiers to differentiate between ”stopping”
and ”crossing” (SC) or ”bending-in” and ”straight” (BS).
The idea for LDCRFs is now to replace one abstract label
by a specified number of latent variables in order to model
the extrinsic and intrinsic class dependencies. The number
of feature functions/parameter can be controlled by setting
a time window for temporal feature dependencies to be
learned. During experiments, we evaluated different window
sizes (0, . . . , 5) and different number of hidden states per
class label (1, . . . , 4) for training of our LDCRF models.
Only the best performing models are visualized. The training
algorithm is adapted to not take data of future frames into
account for actual observations. This will prevent latency
of our system. Observations taken from a stopping scenario
related to TTE values larger than 5 are members of the
crossing class. Indeed, modifying this threshold has strong
impact on the course of the performance plots displayed
later. For evaluation, a sliding window is shifted over a
whole pedestrian trajectory to collect frame-based system re-
sponses. We want to analyze the system’s capability to early
detect critical situations with a high reliability. Therefore,
we show the system’s output, namely the event probability
for a pedestrian to stop at the curbside or turning in. We
are interested in the behavior of the system’s output within
a short time range around the actual event for both types
of scenarios. As proposed in literature [11], [12], we focus
on TTE interval of [−5, 20]. Plotted are mean and standard
deviation of event probabilities over all tested sequences.
Positive TTE-values relate to frames prior to the event,
while for negative TTE-values the event already occurred.
A system for pedestrian action/intention-recognition to be
used for collision warning or even avoidance, the desired
event-probabilities should have the following course. In an
early stage (20 to 15 frames prior to the event) the event
probabilities should still have considerable low values. To-
wards the occurring event, the probabilities should increase
rapidly showing a strong gradient. This behavior will lead to
systems less sensitive to false activations. We consider this
fact during interpretation of our results.

C. System Performance

Evaluation is done on single features only and on their
combined versions. Fig. 4 and Fig. 5 show the evaluation
results for our SC-models and BS-models respectively. Com-
pared to the single-feature-based models, the combined SC-



Fig. 4. Stopping probabilities for our LDCRF model. Road-crossing
scenarios (upper) and stopping scenarios (lower). Visualized are mean and
standard deviation (shaded area) over all tested sequences.

model (Pos+Vel+Hp) is able to reliably recognize crossing
situations, i.e. the stopping probability is approximately zero
within the considered time period for most of test sequences.
For stopping scenarios the probability increases continuously
towards the stopping event (TTE=0). While at an early stage
(TTE=20) for most of the stopping sequences the system still
tends to predict a crossing scenario (low average stopping
probability smaller than 0.025 with a standard deviation
near to 0), this behavior rapidly changes for getting closer
the actual stopping event (TTE∈ [0, 5]). The combined BS-
model shows similar behavior. The velocity components
do not seem to have the impact on an accurate intention
recognition for BS-scenarios compared to CS-scenarios. We
explain this by the fact, that absolute velocity values do
not change that significant for a bending in rather than
for a stopping scenario where the values tend to zero.
Another interesting observation is related to the power of
the head pose feature. While for the CS-model, the head
pose cannot contribute significantly to a performance gain,
for the BS-model the opposite is the case. Here, the model
only trained on the head pose feature outperforms the one
trained on velocity inputs. We explain this by the presence
of a dominant pedestrian head turning towards the oncoming
vehicle in most of the sequences. This also reflects pedestrian
behavior in real-world scenarios. The motion histogram
features introduced by [11] were used in two ways. Firstly, by
applying a PHTM-like version and secondly by integrating

Fig. 5. Bending-in probabilities for our LDCRF model. Straight-walking
scenarios (upper) and bending-in scenarios (lower).

the features into a LDCRF model, see Fig. 6. Compared
to out LDCRF model, the PHTM approach (green) results
in more unstable intention estimates over the whole dataset
especially for crossing situations. Nevertheless, the motion
histogram features show high potential for a robust intention
recognition in combination with a LDCRF model (red). We
also trained standard machine learning approaches – here,
SVMs and Random Forests for SC – to test their suitability
compared to LDCRF. Therefore single observations were
integrated over time window of 20 frames. Results are given
in Fig. 7. Compared to LDCRF, SVM (green) and RF models
(red) result in unstable estimates for the underlying scenarios.
At an earlier stage there is still a comparably high confusion
between ”stopping”- and ”crossing”-scenarios for both SVM
and RF models, whereas the LDCRF results in more stable
estimates.

V. CONCLUSION

We presented a method to estimate the intention of lateral
approaching pedestrians in the domain of intelligent vehicles.
Multiple features capturing the pedestrian dynamics and the
awareness of the nearby traffic situation were used to learn
a LDCRF model. The proposed model has the advantage to
automatically learn intrinsic structure and feature dependen-
cies as well as temporal dynamics between different actions.
Evaluation of the model showed stable intention estimates
for different scenarios compared to other machine learning
approaches. The model provides evidence for potential risky



Fig. 6. Stopping probabilities for our best LDCRF (blue), a LDCRF
learned on ped. position and motion histograms (red) and a PHTM-like
approach [11] (green).

situations and therefore can serve for better pedestrian path
prediction or be directly integrated into a system implement-
ing a pedestrian warning or emergency braking function for
reduction of false alarms.
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