
Real Time Head Model Creation and Head Pose Estimation
On Consumer Depth Cameras

Manuel Martin
Fraunhofer IOSB
Fraunhoferstr. 1

76131 Karlsruhe, Germany

Florian van de Camp
Fraunhofer IOSB
Fraunhoferstr. 1

76131 Karlsruhe, Germany

Rainer Stiefelhagen
Karlsruhe Institute of Technology

Vincenz-Priessnitz-Str. 3
76131 Karlsruhe, Germany

Abstract

Head pose estimation is an important part of the
human perception and is therefore also relevant to make
interaction with computer systems more natural. However,
accurate estimation of the pose in a wide range is a
challenging computer vision problem. We present an
accurate approach for head pose estimation on consumer
depth cameras that works in a wide pose range without
prior knowledge about the tracked person and without
prior training of a detector. Our algorithm builds and
registers a 3D head model with the iterative closest point
algorithm. To track the head pose using this head model
an initialization with a known pose is necessary. Instead of
providing such an initialization manually we determine the
initial pose using features of the head and improve this pose
over time. An evaluation shows that our algorithm works
in real time with limited resources and achieves superior
accuracy compared to other state of the art systems. Our
main contribution is the combination of features of the
head and the head model generation to build a detector
that gives accurate results in a wide pose range.

1. Introduction

Head pose estimation is an important part of the non-
verbal communication of humans. People subconsciously
use it to determine the direction of attention of others to get
an idea of their intention. The same principle can also be
used in computer systems to react to users in a natural way.
Example uses include assisting technologies like a collision
warning system in a car which mutes an alarm if the car de-
tects that the driver is already aware of the threat, but also
include natural user interfaces. Such interfaces allow users
to interact with novel input modalities such as gestures in-
stead of traditional input devices like mouse and keyboard.
In such settings head pose can be utilized as an additional

modality, either for direct interaction or to determine if the
users’ focus is on the computer system to only react if input
is directed at the system.

Our approach is based on tracking a head model using
the iterative closest point algorithm but unlike other ap-
proaches the creation of the head model is part of our al-
gorithm as well. This has the advantage that the model
fits exactly to the user and can even incorporate things like
glasses. But it also poses some challenges: The head has to
be segmented to generate the model and the orientation of
the generated model can be different every time, therefore
an additional transformation from the result of the model
tracking to the head pose is necessary. Both of these prob-
lems can be solved efficiently. We will show how the head
pose can be used to segment the head in a straightforward
way and how the required transformation can be determined
using features of the head.

2. Related Work

There are many different approaches to head pose es-
timation. Research of non intrusive head pose estimation
started with mono and stereo cameras. Murphy-Chutorian
et al. give a good summary of such approaches [6]. They
can be divided into feature based and appearance based ap-
proaches.

Feature based detectors extract features of the head to
estimate the pose. This has the advantage that most natu-
ral features do not change much from person to person, so
the inter person variance is low [14]. The disadvantage is
that most features lie on the face which limits the detectable
pose range because most of the facial features are at least
partially occluded in side views. Another drawback is the
need for high resolution to detect these features.

Appearance based detectors use the whole visible face
and do not extract additional features. To build such a de-
tector, multi layer perceptrons have shown to give good re-
sults [13]. The advantage of this approach is that a much
lower resolution is sufficient to estimate the head pose, with

4321



the drawback that the general appearance varies much from
person to person making it harder to keep the head pose es-
timation person independent.

Different lighting conditions can be a great challenge
for cameras in the visible light spectrum because they can
change the appearance of faces drastically. Consumer depth
cameras on the other hand do not suffer from this problem
because their depth sensing method is mostly independent
from ambient lighting. Apart from the invariance to illumi-
nation depth sensing cameras open the way to completely
different approaches to head pose estimation because they
offer easy and cheap access to dense depth images. There
are different ways to use this information. It is possible
to use machine learning algorithms like random decision
forests [3, 9] directly on the depth image, with the advan-
tage that a single depth image is sufficient to estimate the
head pose. Other approaches first extract some informa-
tion out of the depth image like a point cloud around the
nose [11] or a reference depth image of the head [7] and
then match this information to the following frames to es-
timate the pose change relative to the initialization. These
methods have the disadvantage that they assume that the
head pose is initially known in order to track the head pose
in following frames. A third method for depth based head
pose estimation uses some form of precomputed personal-
ized head template [2, 15] and then matches this template
to the live data using iterative closest point to estimate the
head pose. The drawback of this approach is that the gener-
ation of the template is not part of the algorithm itself. The
template may, for example, be generated with a morphable
head model [15], but this approach often requires manual
initialization of key points which is not optimal. A generic
head model can also be used with good results by precom-
puting reference range images for different head poses and
comparing them all to the current input in a massively par-
allelized algorithm on the gpu [1]. It is also possible to esti-
mate the head pose by extracting features in the point cloud.
The approach used by Gurbuz et al. [4] extracts a face plane
and the eye positions in 3D and uses this information to de-
termine the pose. This approach has the advantage that it
also works on single depth images but the detectable pose
range is severely limited because both eyes have to be visi-
ble which is not the case in side views of the head.

To conclude this section we can state that each of the dis-
cussed approaches has some disadvantages. Template based
approaches need a personalized template, feature based ap-
proaches can only detect a limited pose range and tracking
based approaches need a initialization with a known head
pose. The key idea of our algorithm is to combine these
approaches to get most of the advantages without the limi-
tations.

Figure 1. The flowchart of the combined head pose detector.

3. Implementation
Our approach consists of the following building blocks:

1. preprocessing, which is required to remove noise in the
depth image

2. head segmentation, that is necessary to build the model

3. generation of the head model

4. head pose estimation using features of the head

Figure 1 shows how these parts are combined. Our algo-
rithm starts without any information about the person in
front of the camera. To find the person and to initialize the
model it uses a face detector. The initialization works in the
head pose range where the face detector works. The orienta-
tion of the generated model can therefore differ at each ini-
tialization. Accordingly, with the registration of the model
alone it is only possible to determine the pose change from
frame to frame, but it is not possible to determine the head
pose. To solve this problem the algorithm uses features of
the head at the initialization to determine the transformation
from the model orientation to the head pose. With this trans-
formation the algorithm is then able to determine the head
pose and to extend the model in following frames without

4322



the use of features of the head. Estimating this transforma-
tion from features of a single frame can be unreliable the
algorithm therefore improves the transformation on some
further frames.

In the following, we describe each part individually and
then describe how the parts are combined to form the final
detector.

3.1. Preprocessing

The algorithm uses the color image of the consumer
depth camera to initially find the head. To be able to use
the found region on the depth image we register the depth
image to the color image with the intrinsic and extrinsic pa-
rameters of the consumer depth camera.

The depth image of consumer depth cameras, however,
usually contains some noise. This noise causes the regis-
tration algorithm, used later on to register the head model,
to fail in difficult situations. We therefore use a smoothing
algorithm to remove most of the noise. The smoothing algo-
rithm has to be edge aware to prevent artifacts on depth dis-
continuities. The bilateral filter would be a choice to solve
this problem but it is too time consuming. We therefore im-
plement our own smoothing algorithm which is faster but
with the drawback that it can produce some artifacts. Our
smoothing filter first applies a Gaussian filter to the depth
image. This causes many artifacts on depth discontinuities
and on edges with invalid depth values in the neighborhood.
These artifacts become apparent if the depth image is con-
verted to a point cloud (see Figure 2a). To remove most of
these artifacts the algorithm subtracts the smoothed image
from the original image and applies a threshold. All pixels
in the resulting image with values higher than the thresh-
old are considered artifacts. We choose a threshold of 10
mm to ensure that all remaining artifacts are smaller than
any feature of the head. There are often additional artifacts
that are smaller than the threshold in the neighborhood of
larger artifacts. To remove them as well, the algorithm ap-
plies a morphological dilation to extend the mask gener-
ated by thresholding (see Figure 2b). Lastly the smoothingc
algorithm sets all the identified artifacts in the smoothed
depth image to their original values. This approach results
in smoothing of surfaces with the disadvantage that the fi-
nal image may contain some remaining artifacts and that the
edges stay noisy and frayed out (see Figure 2c).

After smoothing, the depth image is converted to a point
cloud using the intrinsic parameters of the depth sensor. We
use iterative closest point with the point to plane metric to
register the head model later on and therefore need the nor-
mals of the points in the point cloud. We determine the nor-
mals with a simple cross product of the neighboring points.
Normals created this way on the original sensor data would
be to inaccurate for registration but with our smoothing al-
gorithm this approach is suitable and fast.

3.2. Segmentation

We use two different approaches to segment the head
depending on how much information is already available
about the current frame.

If no information about the current frame is available we
use a face detector to determine the location of the user’s
face. We use a commercial face detector [12] to detect the
face because it also estimates the location of the eyes which
is used by the second segmentation algorithm. We can then
use the bounding box of the face, obtained from the color
image to cut out the corresponding part of the depth image
to create the segmentation.

If the head pose is already known in the current frame
F it can nevertheless be necessary to segment the head to
extend the head model. In this case the head pose can be
used to extract the head in a robust way. To achieve this the
segmentation algorithm defines an axis aligned bounding
box with the parameters Cmin and Cmax and positions it at
the origin of the coordinate system. It then transforms each
point of the current point cloud with the inverse head pose
P−1 and tests if the point lies inside the bounding box. This
results in a point cloud T which only contains the head and
is defined by following equation:

T = (x|x ∈ F ∧ P−1x > Cmin ∧ P−1x < Cmax) (1)

A bounding box with a default size is enough to segment
the head in general but it can occur that additional clutter
like the headrest of a chair are included in the segmenta-
tion. The result can therefore be improved by estimating
the size of the box more accurately based on facial features.
Our head pose algorithm determines the tip of the nose and
a point inside the head. The face detector additionally deter-
mines the positions of the eyes. Based on this information
the width of the box can be calculated from the distance
between the eyes, the depth from the distance between the
origin and the nose tip and the height from the distance be-
tween the center of the eyes and the line between nose tip
and origin (see Figure 3). With those features it is then pos-
sible to determine the size of the box more accurately, but it
is also possible to determine boxes for different head parts
like the eyes, the nose or the facial area.

3.3. Model Structure

The head model can be described as a collection M =
{Pi, Ti}Ni=1 of model parts, where each part i consists of a
point cloud Pi and its orientation Ti in the model. N is the
number of current model parts. It increases as new parts are
added to the model. Data is therefore not integrated into a
single consistent representation but consists of independent
parts. This approach reduces the cost of model creation
significantly but also sacrifices consistency. Each part of
the model represents a certain view of the head. The point

4323



(a) (b) (c)
Figure 2. (a) shows a point cloud reconstructed from a depth image smoothed with a simple Gaussian filter causing the artifacts. (b) shows
the mask used to identify the artifacts and (c) shows the result of our smoothing algorithm.

Figure 3. Scheme of the box segmentation. The red box denotes
the segmentation of the whole head, the green box the segmen-
tation of the facial feature area and the black lines visualize the
distances used to size the boxes.

clouds stay unmodified after their segmentation, therefore
the saved transformation is necessary to describe the loca-
tion and orientation of the part in the model. This trans-
formation is the registration result of the head model at the
time of the part’s creation. The first model part is created
without prior registration, its transformation is therefore the
identity matrix.

This model design has advantages for efficient registra-
tion because given a hypothesis of the current pose it is pos-
sible to select a suitable part of the model with an appropri-
ate view and therefore to discard large parts of the model
which are not visible anyway.

3.4. Head Model Creation

The head model is initialized at the start of the algo-
rithm using the face detector based segmentation to extract
the point cloud of the first model part. The transformation
of this part is the identity matrix because it is generated
without prior registration and therefore fits directly into the
model. On all following frames the algorithm continually
registers the model with the iterative closest point algorithm
using the result of the previous frame as the initialization of
the registration algorithm. After each successful registra-
tion the algorithm determines if a new model part should
be created by checking if the angular distance d(Ti, Tc) be-
tween the current registration result Tc and the transforma-

tion of all model parts Ti is greater as a threshold dm:

N(Tc) =

{
true ∀Ti ∈M : d(Ti, Tc) > dm
false else (2)

Tc controls the angular distance between all parts of the
model. A small distance results in model parts that are very
similar and overlap to a high degree. A large distances on
the other hand can result in a model with no overlap and
unfillable holes. If a new model part is necessary it is cre-
ated with the segmentation based on the bounding box. We
evaluated dm systematically and found that a value of 0.4
radians results in the best performance.

3.5. Model Registration

Iterative closest point is a standard algorithm to find a
transformation that minimizes the distance between point
clouds. We use it here to register the head model continually
to the live data. The algorithm has a few characteristic steps:

1) Finding Correspondences: A major part of the algo-
rithm is the selection of correspondences. We use back pro-
jection of the model points onto the depth image with the
intrinsic parameters. This approach introduces some inac-
curacies compared to a direct nearest neighbor search with
a kd-tree but it is much faster [8].

2) Correspondence Filtering: The found correspon-
dences often contain outliers which are filtered out in two
steps. Firstly, every correspondence with a distance larger
than 20cm is filtered out to remove any correspondences
with the background. Secondly, the median of the dis-
tances of all correspondences is determined and all corre-
spondences with a distance larger than twice the median are
filtered out. This step increases the robustness to occlusions
and facial expressions because points that do not fit to the
common shape of the model and the current frame are ig-
nored (see Figure 4).

3) Transformation Estimation: After filtered correspon-
dences are determined the transformation is estimated with
the point-to-plane metric, which is minimized with a linear
least squares approach [5].

4) Termination Check: Iteration is stopped at the latest
after 30 iterations but if this occurs the registration is re-
garded as a failed attempt and is not used. Iteration stops

4324



(a) (b)
Figure 4. (a) shows the input point cloud annotated with the head
pose and (b) shows the used model part. Red dots denote the points
filtered out by the correspondence rejection stage.

before if the rotation and translation change from iteration
to iteration falls below a threshold.

As previously explained, our model consists of indepen-
dent point clouds each representing a specific view of the
head. This can be used by the registration algorithm to
improve the speed and robustness of the registration. The
registration algorithm uses the registration result of the last
frame as the initialization in the current frame Tguess. Ad-
ditionally, it uses this estimate to search for the part of the
model with the lowest angular distance to the estimate:

Pselected(Tguess) = {Pi ∈M : min
i∈N

d(Tguess, Ti} (3)

This part represents the view of the head which is most sim-
ilar to the expected view in the current frame. To register it
the transformation estimate Tguess has to be corrected with
the transformation Tselected of the selected part:

T̂guess = Tguess ∗ T−1selected (4)

After the registration this correction has to be reverted to get
the final result:

Tresult = T̂result ∗ Tselected (5)

If the registration of the nearest part fails the selection of
a model part and the registration is repeated excluding the
already tried parts. This has the effect that gradually further
away parts are tried which can help with facial deforma-
tions and occlusions because those parts may not contain the
problematic areas and may work even if parts with a smaller
angular distance fail to work. At the moment we limit the
tried parts to 4 because of performance reasons. All remain-
ing parts of the model are ignored which increases the speed
of the registration algorithm because it allows to register
only a fraction of the whole model on each frame. Addi-
tionally, it increases robustness because most of the model
that is not represented in the current frame is not used for
registration and can therefore not create wrong correspon-
dences and wrong registration results.

Figure 5. An example of the feature based pose estimation. The
green points denote the points that support the cylinder estima-
tion and the red points are the identified outliers. The pink sphere
shows the estimate of the nose tip.

3.6. Head Pose Estimation with Features

The feature based pose estimation algorithm does not
rely directly on features of the head. It works on hypothe-
ses of the pose coordinate system axes and of the pose co-
ordinate system origin. Those hypotheses can be generated
from different sources and can also be accumulated over
time to make the estimation more robust. We choose the
nose tip and the vertical head axis as features because they
are easy to find on a segmentation of the depth image of the
head. In the following we first explain how the features are
detected and then how the head pose is generated with the
detected features.

Detection of the vertical head axis works by fitting a
cylinder with random sample consensus to the given seg-
mentation of the head. This algorithm has the advantage
that it can work even if many outliers exist. In our case
these outliers are all points that are not part of the general
face curvature like the nose or the sides of the head. The
random sample consensus algorithm determines for each
point of the point cloud if it is an inlier and supports the
model or if it is an outlier. The algorithm only proceeds
with the nose detection if at least 20% of the points of the
head segmentation are labeled as inliers.

Nose tip detection works on the simple assumption that
the nose tip is the point nearest to the sensor in the head
segmentation. This assumption is only true if the head is
roughly oriented in the direction of the sensor. To greatly
extend the region where the nose can be detected the point
cloud can first be transformed with the inverse head pose to
always get an almost frontal view. The inverse head pose
can be from different sources. It can either be the estimated
head pose of the current frame or the head pose of the last
frame. If no estimate is available the algorithm uses the
identity matrix.

After the detection of the features, the algorithm gener-
ates the hypotheses for the coordinate axes. It generates a
hypothesis of the origin by projecting the nose tip onto the
estimated cylinder. It generates a hypothesis of the z-axis

4325



as the vector between the estimated origin and the nose tip
and uses the estimated cylinder axis as the hypothesis of
the y-axis (see Figure 5). It can not generate a hypothesis
for the x-axis directly out of the features but it can com-
pute such a hypothesis with a cross product of the two other
axes hypotheses. The axes hypotheses are orthogonal to
each other so a pose could be directly generated, but the
accuracy of the pose can be improved if more features are
used which makes it impossible to determine the pose in
such a simple way because the hypotheses are not necessar-
ily orthogonal to each other. The basic problem is to find
a rotation matrix that is closest to the degenerated rotation
described by the axis hypotheses. To solve this problem
for arbitrary numbers of hypotheses we formulate it as a
search for a rigid transformation between known point cor-
respondences. There are different algorithms to solve this
problem. We use the algorithm developed by Schöneman
[10]. The correspondence to each of the axis hypotheses is
the corresponding axis of the standard euclidean coordinate
system. The algorithm starts with a covariance matrix of the
features which is defined by following equation:

C =

N∑
i

fT
i ∗ ci (6)

where fi is the i-th axis hypothesis and ci is the corre-
sponding coordinate axis of the standard euclidean coordi-
nate system. The result of the algorithm is a rotation matrix
that minimizes the the euclidean distance between the corre-
sponding points. This rotation matrix can then be combined
with the average of all accumulated origin hypotheses to the
complete head pose.

3.7. Fusion of the Building Blocks

The following description follows the three groups de-
picted in 1. The algorithm first initializes, then it can es-
timate the head pose and while estimating the head pose
it can optimize the needed transformation from the model
registration result to the head pose.

Initialization works by first initializing the model gener-
ating algorithm. This creates the first model part which has
the identity matrix as its transformation (see Section 3.4).
The problem is that it is not known how the head is oriented
inside the model. Therefore the head features are estimated
and the head pose is determined based on these features.
This head pose determined with features constitutes a trans-
formation from the registration result of the model to the
head pose in all following frames. The head pose then de-
pends on the transformation determined by the registration
TICP and on the head pose determined with features Tinit

at the time of initialization. The head pose is determined
with following equation:

Theadpose = TICP ∗ Tinit (7)

This equation also works on the initialization frame because
TICP is the identity matrix by default.

Pose Estimation after the initialization works by simply
registering the model with ICP and using equation 7 with
Tinit - the transformation determined with features at the
initialization of the model.

Transformation Improvement of Tinit is necessary be-
cause as our evaluation shows the head pose determined
with features is not as accurate. However, the error made
in this transformation affects all following pose estima-
tions. To improve this transformation features are collected
on more frames and the transformation Tinit is determined
with all of them which averages out the error. The basic
principle how these features are combined is already ex-
plained in section 3.6. The remaining problem is that the
head moves from frame to frame so the extracted features
of different frames are not oriented in the same direction.
However, this can easily be corrected by multiplying the
features with the inverse ICP result T−1ICP . This approach
also has the advantage that it is not necessary to determine
the features on each frame to improve the transformation.
Instead it is possible to wait until the estimated pose indi-
cates a view where the features can be extracted more re-
liably. We therefore limit the pose range where additional
features are estimated to near frontal faces with a yaw angle
of ±25◦, because in this range the features are estimated
with the best precision. We limit the improvement to 100
frames because doing it on more frames does not have much
effect.

An algorithm based on tracking has to reinitialize if
tracking is lost. In this case our algorithm uses the face
detector to find the head again and to create a head segmen-
tation. The segmentation is then used by the feature based
head pose detector to generate a new pose hypothesis for
the registration of the model with iterative closest point.

4. Evaluation
To evaluate our algorithm we use an annotated test data

set created by Fanelli et al [3]. It consists of 15678 an-
notated frames, recorded with the Microsoft Kinect, with
head rotations of ±75◦ for yaw, ±60◦ for pitch, and ±50◦
for roll. Each frame contains the segmented upper body
of a person. The frames are split into 24 streams with 14
male and 6 female participants. The ground truth was au-
tomatically generated with a template based head pose de-
tector that achieves a reported accuracy of about 1◦. Some
of the streams contain challenging data with fast rotations
where iterative closest point sometimes fails to converge
correctly. Additionally there are streams where long mov-
ing hair make model generation difficult. Some of the
streams also contain gaps presumably because the auto-
matic annotation system failed on these frames. Those gaps
sometimes lead to failed tracking in our algorithm and ac-

4326



Table 1. The performance statistics of the head pose detector based on features and of the combined detector.
Mean Absolute Error [◦] Success

Roll Pitch Yaw Angle rate [%]
Feature based detector 6.82 4.88 5.14 11.18 94.99
Combined detector after first iteration 3.26 2.34 2.61 5.47 94.41
Combined detector after fifth iteration 3.62 2.54 2.57 5.77 97.58

count for some of the missed frames. In the following evalu-
ation we will exclude all frames where our algorithms could
not estimate the pose but we always note the percentage of
used frames, called the success rate from here on. In addi-
tion to the mean absolute error of the Euler angles we also
determine the absolute angle error. It is defined as the L2-
norm of the Euler angles and allows to compare different
results more easily.

First we evaluate the performance of the feature based
head pose. In the combined algorithm it is used to estimate
and improve the transformation from the model to the head
pose Tinit. In this case, the feature based head pose esti-
mation is initialized with the facial area segmented with the
box segmentation and with the current head pose to find the
nose. To evaluate this step independent of the rest of our
algorithm we need the current head pose independent of the
rest of our algorithm. We therefore use the ground truth of
each frame as the initialization to find the nose and we use
the the box segmentation as usual.

The combined algorithm builds the head model from
scratch. It is therefore expected that the algorithm has a
lower success rate in the beginning than later on when a full
model is already available. To test this we started the algo-
rithm on each stream of the test dataset without a model and
let it iterate five times over the images of the stream to give
the algorithm time to create the model.

Table 1 shows the result of our evaluation. The feature
based detector alone does not achieve highly accurate re-
sults. The combined algorithm on the other hand achieves a
precision twice as good as the feature based detector. This
shows that the estimation of the transformation from the
model to the head pose Tinit determined with features col-
lected on different frames improves the accuracy notably.
The table also shows that the errors of the combined algo-
rithm in the first iteration is slightly lower than the error
in the last iteration but that the success rate increases by
3%. This indicates that in the first iteration some more dif-
ficult frames do not work that work in later iterations where
the model already contains more information. This also ex-
plains the slightly lower performance in later iterations be-
cause more difficult frames are likely estimated with less
accuracy. The performance does not change further with
more iterations, because after three iterations the results do
not change anymore as all possible head parts are added to
the model.

0 2 4 6 8 10 12 14 16 18 20
Tolerance [Degrees]

30

40

50

60

70

80

90

100

Co
rr

ec
tn

es
s 

[P
er

ce
nt

]

Yaw
Angle
Tobias Bar et al. Yaw
Fanelli et al. Angle

Figure 6. The correct classification rate depending on the accepted
level of inaccuracy of our algorithm compared to other systems.

Figure 6 shows the result of our detector after the fifth
iteration in comparison to two other state of the art systems
that have been evaluated on the same dataset. The system
developed by Tobias Bär et al. [2] uses a personalized head
template and iterative closest point and the system devel-
oped by Fanelli et al. [3] uses random decision forests.
Accepting a tolerance of 4 degrees in yaw, our algorithm
estimates 85% of the head poses correctly while the system
developed by Tobias Bär et al. estimates 82% correctly.

While the frame rate can drop down to 28fps on fast head
movements, caused by the iterative closest point algorithm
needing more iterations to converge, our algorithm achieves
an average frame rate of 48 fps on the test dataset on a single
Core of an Intel Core i7-2600K. This is more than sufficient
as the depth sensors only provide frames at 30fps.

Figure 7 shows some examples of corner cases of our
algorithm. We noticed that our model tracking algorithm
can only cope with limited non rigid changes of the head.
Especially long hair that fall into the face cause some prob-
lems. Another problem are fast rotations around the yaw
axis which cause our model to sometimes get stuck on the
cheek. On the other hand, we noticed that our algorithm
can cope well with occlusions and that it can detect even
extreme rotations in yaw of up to ±120◦ if the ears are not
occluded by hair.

4327



(a) (b) (c) (d) (e)
Figure 7. Pictures of different results of our detector. (a) shows a problem occurring with long moving hair, (b) shows a wrong registration
on fast head movements, (c) shows the robustness to facial expressions and occlusions ,and (d) and (e) show results for extreme angles.

5. Conclusion and Future Work

We have presented a novel approach for head pose esti-
mation with consumer depth cameras, that works with high
precision without prior knowledge of the tracked person and
without the training of a detector. To achieve this, we com-
bined an algorithm to generate and track a model of the head
with feature based head pose estimation. Our evaluation
shows that our algorithm achieves a mean absolute error of
3.62◦ in roll, 2.54◦ in pitch and 2.57◦ in yaw over a high
pose range of up to ±120◦ in yaw. It runs with an average
frame rate of 48fps on a single core of a modern processor.

In the future we plan to improve our algorithm for gen-
erating the head model with means to better ensure the con-
sistency of the model and to improve its accuracy with a
method to solve the loop closure problem. We also plan to
improve the robustness of the detection of the used features
and will also explore the use of other features.

References

[1] M. D. Breitenstein, D. Kuettel, T. Weise, L. Van Gool, and
H. Pfister. Real-time face pose estimation from single range
images. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1–8.
IEEE, 2008.

[2] T. Bär, J. Reuter, and J. Zöllner. Driver head pose and gaze
estimation based on multi-template icp 3-d point cloud align-
ment. In Proceedings of the 15th International IEEE Con-
ference on Intelligent Transportation Systems (ITSC), pages
1797 –1802, 2012.

[3] G. Fanelli, T. Weise, J. Gall, and L. Van Gool. Real time
head pose estimation from consumer depth cameras. In Pro-
ceedings of the 33rd Annual Symposium of the German As-
sociation for Pattern Recognition (DAGM), 2011.

[4] S. Gurbuz, E. Oztop, and N. Inoue. Model free head pose es-
timation using stereovision. Pattern Recognition, 45(1):33–
42, 2012.

[5] K.-L. Low. Linear least-squares optimization for point-to-
plane icp surface registration. Chapel Hill, University of
North Carolina, 2004.

[6] E. Murphy-Chutorian and M. Trivedi. Head pose estimation
in computer vision: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(4):607–626, 2009.

[7] P. Padeleris, X. Zabulis, and A. Argyros. Head pose es-
timation on depth data based on particle swarm optimiza-
tion. In Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 42–49, 2012.

[8] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp
algorithm. In Proceedings of the 3rd International Confer-
ence on 3-D Digital Imaging and Modeling, pages 145–152.
IEEE, 2001.

[9] S. Schulter, C. Leistner, P. Wohlhart, P. M. Roth, and
H. Bischof. Alternating regression forests for object detec-
tion and pose estimation. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), pages
417–424. IEEE, 2013.

[10] P. Schönemann. A generalized solution of the orthogonal
procrustes problem. Psychometrika, 31(1):1–10, 1966.

[11] Y. Tu, H.-S. Lin, T.-H. Li, and M. Ouhyoung. Depth-based
real time head pose tracking using 3d template matching. In
Proceedings of SIGGRAPH Asia, SA ’12, pages 13:1–13:4.
ACM, 2012.

[12] Videmo. FaceSDK. http://videmo.de/. Accessed:
01.07.2014.

[13] M. Voit, K. Nickel, and R. Stiefelhagen. Neural network-
based head pose estimation and multi-view fusion. In
R. Stiefelhagen and J. Garofolo, editors, Multimodal Tech-
nologies for Perception of Humans, volume 4122 of Lecture
Notes in Computer Science, pages 291–298. Springer Berlin
Heidelberg, 2007.

[14] J.-G. Wang and E. Sung. Em enhancement of 3d head pose
estimated by point at infinity. Image Vision Computing,
25(12):1864–1874, 2007.

[15] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime
performance-based facial animation. In Proceedings of ACM
SIGGRAPH, SIGGRAPH ’11, pages 77:1–77:10. ACM,
2011.

4328


