Visuelle Perzeption für Mensch-Maschine Schnittstellen

Vorlesung, WS 2009

Prof. Dr. Rainer Stiefelhagen
Dr. Edgar Seemann

Institut für Anthropomatik
Universität Karlsruhe (TH)

http://cvhci.ira.uka.de
rainer.stiefelhagen@kit.edu
seemann@pedestrian-detection.com
Exam

- Oral exam
- 4 SWS
- Results from programming assignments will be taken into account

- All lectures are relevant for the exam
- Important for a good understanding are:
 - Big picture and inter connections
 - Details (e.g. equations)

- Don’t panic!
Overview

2009-10-19 Einführung
2009-10-23 Basics: Image Processing
2009-10-26 Basics: Image Transformation and 2D Structure
2009-10-30 Pattern recognition
2009-11-02 Computer Vision: Tasks, Challenges, Learning
2009-11-06 Face Detection 1
2009-11-09 Project 1: Intro + Programming Tips
2009-11-13 Face Detection 2
2009-11-16 Project 1: Questions
2009-11-20 Face Recognition 1
2009-11-23 Face Recognition 2
2009-11-27 Head Pose Estimation, Focus-of-Attention
2009-11-30 People Detection 1
2009-12-03 People Detection 2
2009-12-07 Project 1: Presentations, Project 2: Intro
2009-12-11 People Detection 3
2009-12-14 People Detection 4
2009-12-18 Context and 3D Structure
2009-12-21 Facial Feature Detection
2010-01-11 Facial Expression Recognition
2010-01-15 Gesture Recognition
2010-01-18 Tracking I
2010-01-22 Tracking II
2010-01-25 Activity Analysis I
2010-02-05 Activity Analysis II
2010-02-08 Audio-visual Speech Recognition
Goal

- What did you like/dislike?
- Which topics should be added/extended?
- Review the topics of this lecture
 - What are the applications?
 - Which methods can be used?
 - How is it done?
- Preparation for your exam
- Questions
- We'll proceed lecture by lecture
Basics

1. Image Transformations & 2D structure
 - pinhole model
 - Image formation as linear transformation
 - Homogenous coordinates
 - Camera calibration
 - Extrinsic vs. Intrinsic parameters
 - Lenses
 - Focus and focal length
 - Thin lens formula
 - Infinity focus, focus and distance
 - Lens systems and abbreviations
 - Alignment
 - Euclidian, affine, perspective transformation
 - Degrees of Freedom
Basics

2. Image Processing
 - Digital images, sampling artifacts
 - Filtering and convolution (continuous vs. discrete)
 - Kernels (blur, sharpen)
 - Properties of the convolution (linear system)
 - Gaussian averaging
 - Separability
 - Edges
 - Types of edges
 - 1st and 2nd derivatives
 - 1D vs. 2D equations
 - Gradient direction
 - Non-Maximum suppression
 - Thresholding, Hysteresis
 - Laplacian
Basics

- Color
 - Human perception
 - Reflectance model, spectra
 - Additive/subtractive color mixing
 - Color matching process
 - Grassman’s Law
 - Color spaces
 - Primary colors
 - HSV, RGB
 - Color space conversions
3. Pattern Recognition
 - Classification vs. Regression
 - Curse of dimensionality
 - PCA
 - Variance, Covariance-Matrix
 - Redundancy in data
 - Eigenvectors vs. Directions of variance
 - Basis change and projection
 - Assumptions for PCA
 - Algebraic tricks
 - Relation to LDA
 - Bayes Decision Theory
 - Prior/Posterior/conditional probability
 - Bayes Theorem
 - Loss functions
3. Pattern Recognition
 - Perceptron Algorithm
 - Linear separability
 - Convergence
 - Instance-based Learning
 - K-Nearest Neighbors
 - Misleading dimensions
 - Computation time grows with number of training samples
 - KD-Tree
 - Tree construction
 - Search and run-time
 - Ball Trees
Computer Vision Tasks

- Identification vs. Classification
- Segmentation and Localization
- Challenges
 - Occlusion
 - Scale, rotation
 - Robustness
- Sliding window technique

- Training, Validation, Testing
 - Generate Training data: labeling, adding perturbations
 - Cross-Validation
- Generative vs. Discriminative models
- Generalization, Overfitting
- Occam’s razor
Performance Measures

- TP, FP, TN, FN
- ROC
 - True positive rate
 - False positive rate
- RPC
 - Recall
 - Precision
- Other measures:
 - FPPW, FPPI
- Comparing bounding boxes
- Non-maximum suppression
Face Detection

- **Face detection I**
 - Motivation, difficulties, representation
 - Color-based approaches
 - How to model skin-color (parametric, non-parametric)
 - Histogram backprojection vs. Histogram matching
 - Gaussian densities, Mixture of Gaussians
 - Classifiers
 - Postprocessing: Morphological operators

- **Ellipsoid head model detection**
 - And combination with color-based detection
 - Basically a \(\rightarrow \) deformable template
Face Detection II

- Artificial Neural Networks for Face Detection
 - Short repetition of ANNs
 - Preprocessing: histogram equalization
 - Network topology
 - Training

- Viola & Jones approach
 - Haar features
 - Integral image
 - Variant of AdaBoost to select features and to build a strong classifier
 - Classifier cascade for fast processing
Face Recognition I

- Introduction, cognitive issues, history
- Face recognition tasks:
 - open set, closed set, authentication / verification
 - Related metrics
 - Mahalanobis distance
- Feature-based approach
- Eigenfaces
- Fisherfaces
 - Intra-class variation
- Applications
Face recognition II

- Local appearance based approaches
 - Modular Eigenspaces
 - Using DCT, zig-zag scan

- Face Recognition using a 3D morphable model
 - Blanz & Vetter

- Databases & Benchmarks
Head Pose Estimation

- Motivation, relation with focus of attention

- Model-based head pose estimation
 - Needs facial landmark tracking & model

- Head pose estimation with ANNs

- Modeling focus of attention from head pose
 - „who was looking at whom?“
 - Determining whether a robot was addressed or not
People Detection I

- Global vs. Part-Based Approaches
- Levels of supervision
- Contours vs. Colors
- Gradient Histograms
- Interpolation

- Global Approaches
 - HOG (feature computation)
People Detection II

- Silhouette/Chamfer Matching
 - Distance transform
- Advanced silhouette matching (edge orientation, spatio-temporal templates)
- Earth-Mover’s Distance

- Wavelets
 - Mother wavelet, scaling function
 - Basis and projection
 - Wavelet transformation with orthogonal spaces
People Detection III

- Pictorial Structures
 - Body tree decomposition
 - Parsing of body tree

- Local Features
 - Interest points
 - Hessian-/Harris-Points
 - Automatic scale selection
 - Feature Descriptors
People Detection IV

- Implicit Shape Model
 - Star-Model
 - Codebook Generation, Clustering
 - Model Training, Occurrence distributions
 - Hough Transform
 - Detection Loop
 - Figure-Ground segmentation
 - Articulations
 - 4D-ISM, silhouette verification
 - Cross-Articulation learning
 - Instance-Specific Models
Scene Context & Geometry

- The Role of Scene Context
 - Dynamics, Perspective, Ground-Plane assumption
 - Estimating horizon position
 - Surface Estimation

- Multi-view geometry
 - Disparity
 - Epiploar geometry
 - Essential and Fundamental matrix
 - Stereo calibration, rectification
 - Correspondence problem
Facial Expression Recognition

- Motivation, Problems, etc.

- Level of description
 - Facial expressions vs. Emotions
 - Six basic emotions
 - Action Units
 - Facial Action Coding System (FACS)

- Systems
 - CMU Facial Analysis System (Tian et al)
 - Model-based features, ANNs for classification
 - UCSD system for analysis of spontaneous facial behaviors
 - Appearance-based (Gabor-WL), SVM / HMM
Gesture Recognition

- Definition, applications, types of gestures
- HMMs
 - States, Observations
 - Problems: evaluation, decoding, learning
 - Forward, Viterbi algorithm
 - Baum-Welch (Forward-Backward)
- Systems
 - Sign Language Recognition (Starner et al)
 - Pointing Gesture Recognition (Nickel et al)
 - Combining Gestures and Speech
- Applications
Tracking I

- Definitions
- Features
 - Templates, color, background models

- Tracking Schemes
 - Mean Shift
 - Kalman Filter
 - Predict, Update
 - Particle Filter
 - Tracking by Detection

- Examples
 - Audio-Visual Tracking
Tracking II

- Multi-camera systems
 - Calibration, triangulation, stereo processing
- Multi-object tracking
- Tracking of heads and hands
 - Depth from stereo + color, …
- Articulated Body Tracking
 - Taxonomy
 - Models
 - Particle filter for tracking
 - Volume Carving / Voxels
- Metrics for Multi-Object Tracking
Activity Analysis

- Types of actions
- Types of activities
- Temporal Templates, Motion features
- Actions == space-time objects
 - Action features
Good Luck for Your Exam!!!