
Human-Drone Interaction

Zdravko Marinov, Stanka Vasileva, Qing Wang

Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Germany
{ufijd, uredo, ukwet}@student.kit.edu

Abstract

Drones have become a common tool, which is utilized in
many tasks such as aerial photography, surveillance, and
delivery. However, operating a drone requires more and
more interaction with the user. A natural and safe method
for Human-Drone Interaction (HDI) is using gestures. This
paper describes an HDI framework, which is based on the
Robot Operating System (ROS) middleware. Our frame-
work provides the functionality to control the movement of
the drone with simple arm gestures and to follow the user
while keeping a safe distance. We also propose a monocu-
lar distance estimation method, which is entirely based on
image features.

1. Introduction

Drones, or Unmanned Ariel Vehicles (UAVs), are be-
coming more and more common in everyday activities. Al-
though drones are often used for photography and film-
ing, they are also utilized for navigating visually im-
paired persons[4]. Drones are often operated via a remote
control[6] or follow a pre-defined route[5], which limits
their capabilities of interaction with humans.

To tackle this problem, we developed a framework,
which enables the drone to recognize gestures and react to
them in real-time. The drone’s movement can be controlled
by a pre-defined set of arm gestures, making it possible to
maneuver the UAV intuitively by any user without the need
for any prior technical knowledge. We also provide a face-
following mode, in which the drone follows the user’s face
and keeps a safe distance away from him.

1.1. Preliminaries

We used the DJI Tello Drone[1] to implement our frame-
work. The Tello drone is a quadrotor, which has a 5MP
720p RGB frontal camera and a distance sensor on its bot-
tom side to stabilize its flight. The lack of a frontal depth

Figure 1: DJI Tello Drone[1]

sensor and a Bluetooth interface encouraged us to imple-
ment a monocular image-based distance estimation to the
user. To control the movement of the drone and receive
information about its state, we utilized the Tello SDK[3],
which allows connecting to the drone via a WiFi UDP con-
nection. Through this connection, text commands for move-
ment control can be sent as well as queries about the current
state of the drone (e.g. the current altitude).

1.2. Objectives

In this paper, we have two main objectives, which are
characterized by two different modes for the drone’s move-
ment control. The first mode is to use face following to
track the user’s face by keeping a certain distance from him.
The second mode consists of controlling the drone with arm
gestures, in which the drone performs a specific command
corresponding to the gesture. The goal is that in both move-
ment control modes, the drone recognizes a concrete user
and reacts only to their gestures or tracks only their face to
avoid confusion in crowded scenes.

2. Modules Overview
Our framework is displayed in Figure 2. Its pipeline con-

sists of five modules, which are implemented as ROS Nodes
and communicate with each other with ROS Topics. ROS
Nodes can subscribe and publish to a topic, i.e., they can
receive input data and send output data through the topic.
This is indicated by the gray arrows in Figure 2.

1

Figure 2: Our framework’s pipeline. Each green box represents a ROS Node. The arrows show the ROS Topics and their
corresponding subscribers and publishers. The outputs, indicated in red, are the data which is published in the ROS Topics.

2.1. RGB Stream Module

The RGB stream module serves to provide the images,
captured by the drone’s camera, to the pose module. The
frames are retrieved via a UDP connection with the drone
and are forwarded by maintaining a pre-defined frame rate.
The reasoning behind this separate utility module is to make
it possible to replace it with any camera device, such as an
integrated webcam or another drone’s camera. In addition,
this is the only point, where frames are being transferred via
ROS, which reduces the transmission overhead in the rest of
the framework.

2.2. Pose Module

The pose module receives images from the RGB stream
module and estimates three features. Firstly, the 2D joint lo-
cations of all people in the frame are estimated with CMU’s
OpenPose[7]. This includes 18 joints per person. These lo-
cations are used as features for the view estimation and face
recognition sub-modules as indicated by the gray arrows in-
side the pose module in Figure 2.

2.2.1 View Estimation

The view estimation sub-module uses the 2D joint loca-
tions to classify the orientation of the person into the view
classes vi ∈ {vFront, vSide, vBack, vAmbiguous}. It is achieved
by a purely geometrical approach by estimating the angle
of the shoulder axis with the image plane. Since Open-
Pose’s joint locations are 2D, the real 3D angle with the
image plane can only be approximated. To accomplish this,
we consider the ratio of the shoulder width to the nose-to-
neck distance of the OpenPose joints. The motive behind
this is that the nose-to-neck distance is significantly inde-
pendent of the person’s orientation, whereas the shoulder

width becomes smaller when the person is standing side-
ways. We also only consider the ratio between the two dis-
tances, which makes this approach viable at any distance
from the camera. Thus, we classify the view as vSide if this
condition holds:

ds ≤ 0.5 · dntn (1)

where ds is the shoulder width and dntn is the nose-to-neck
distance. If condition (1) does not hold, we check whether
the left ear and shoulder are both on the left side (with re-
spect to right ear and shoulder) and classify the view as
vFront. Similarly, if both are on the right side, the view is
classified as vBack. However, if none of these conditions
hold, the view class is vAmbiguous. We introduced this class
so that the definitions of the other view classes are more
strict and more consistent.

2.2.2 Face Recognition

Lastly, the face recognition ensures that only one concrete
person’s gestures influence the drone and only his face is
followed. Other people’s gestures and faces in the frame
are ignored. There is no conventional face detection in this
module. Instead, the bounding box of the face is directly
derived from the joint locations of the face (i.e. ears, eyes,
nose, and neck). To capture the whole head, the bound-
ing box is extended by a fixed margin across the width and
height. This method makes it possible to infer the user’s
face bounding box from all views, even where there is no
apparent face on the frame (e.g. from the back view).

Afterward, the image crop from the bounding box is for-
warded to the face recognition. We use a Python imple-
mentation of DLIB’s[2] CNN based face recognition. The
method first decides whether there is a face on the input im-
age and then computes the distance between its embedding

2

Figure 3: Distribution of the input feature width-height
product for the distance estimation

in the latent space to all the face embeddings from a pre-
defined template database. If the distance to the best match
is small enough, it classifies the input image as the match’s
identity and only considers them further in the pipeline.

2.3. Distance Module

The distance module is responsible for estimating the
distance to the user. The input for the module is a 7-
dimensional vector. It consists of the width W , height H ,
and width-height product W ×H of the face bounding box
of the user. Additionally, the input also contains a one-
hot-encoding1 of the estimated view class vi and the 2D
euclidean neck-to-waist distance from the OpenPose joints.
The final estimated distance is a scalar value.

The distance estimation is formulated as a classifi-
cation problem with the target distance classes ci ∈
{c100, c150, c200, c250, c300}, where the indices represent a
distance in centimeters. In Figure 3 we can see that the dis-
tributions of the width-height product in our training dataset
have a distinct shape with slightly overlapping regions for
all distance classes. The distinct shapes indicate that a well-
trained classifier would be able to separate the classes in
the latent space. However, we also see why the one-hot-
encoding of the view is needed as an input feature. If the
view was not included, the distributions in Figure 3 would
have a significant overlap (e.g. 200cm in the side view and
250cm in the front view).

We apply a fully-connected neural network (FCNN) to
solve this classification problem. The FCNN contains 4 hid-
den layers with 1000 hidden units each. A dropout layer is
added to avoid overfitting and a residual connection, which
proved to decrease the training time. The output is a soft-
max layer, which models a posterior distribution over the
distance classes. The training dataset for the FCNN con-
sists of 960 images of each distance class (4800 samples in
total), where a person performs different gestures to simu-
late a real-use scenario. The network requires 15 epochs of

1We aggregate vBack and vAmbiguous into one class.

Figure 4: Distance Estimation FCNN Architecture

training with the cross-entropy loss to converge.
To achieve a continuous estimation from the FCNN, a

weighted sum of the distance classes ci with their corre-
sponding softmax outputs si is computed as

∑
i cisi. How-

ever, class labels ci with a softmax output of si are weighted
by 0 if |smax−si| ≥ 0.1, where smax is the largest softmax
output. The weighted sum is then computed by first normal-
izing the remaining non-zero softmax weights so that the
output is a convex combination of the class labels. The es-
timated distance is then forwarded to the movement control
so that the drone can keep a safe distance from the user.

2.4. Gesture Module

The goal of the gesture module is to recognize arm ges-
tures from a user, which could be either a frontal or a lat-
eral2 gesture. The module receives the joint locations of the
user from the OpenPose module as well as the estimated
view class. The gesture module determines whether a ges-
ture is present and if the same gesture is recognized for sev-
eral frames a gesture control command is forwarded to the
movement control.

The idea of the gesture recognition is based on a purely
geometrical approach and requires that both of the user’s
arms are visible. According to the elbow angle the angle
state of each arm is classified as Straight, Perpendicular
or None. In practice, it is not feasible to require the elbow
angle to be exactly at αperp = 90° to be considered as per-
pendicular or at αstr = 180° for a straight state. Therefore,
we allow a certain interval of degrees, in which the state is
recognized as perpendicular αperp ∈ (60°, 120°) or straight
αstr ∈ (140°, 220°) .

Additionally, we also distinguish between the position
states Over, Under and in the Middle, which refer to the
hand’s position with respect to the shoulder. If the angle
states for both arms are not None, the angle and position
states are combined to classify a gesture. For example, in
Figure 5 we see for both arms the angle state Perpendicu-
lar and the position state Over, which constitute the ”Up”
gesture. A gesture is only forwarded to the motion control
when it has been recognized for at least five consecutive
frames. If the previously sent gesture is the same gesture, a

2Gestures which are seen from the side view.

3

certain time period must first pass to avoid sending the same
gesture too often (see Figure 5).

Figure 5: Temporal stability of the recognized gestures

2.5. Movement Control Module

The motion control module includes three modes: key-
board, face tracking, and gesture control mode. The key-
board mode is used to switch between modes and execute
other auxiliary actions. The inputs for the face tracking
mode are the distance to user d and his face bounding box
center coordinates (x, y). The face tracking mode sends
speed commands to the drone so that the user’s face is kept
in the center of the frame and a certain distance is main-
tained away from him. When the gesture control mode re-
ceives a gesture commandG, it enables the drone to execute
the demanded action.

To control the drone, PID controllers have to be created
for each of these movements. The PID controller is a con-
trol loop feedback mechanism that computes the deviation
between a given value (measured process value) and the de-
sired value (setpoint) and corrects it based on the propor-
tional, derivative, and integral terms. Equation 2 shows how
the PID controller functions.

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(2)

where e(t) is the difference between r(t) and y(t). The r(t)
value represents the setpoint and the y(t) value the mea-
sured process value. The u(t) value is the control signal
and is described by the sum of the three terms: the P-term
(proportional to the error), the I-term (proportional to the
integral of the error), and the D-term (proportional to the
derivative of the error).

Each of the PID controllers has to be tuned indepen-
dently to find the correct parameters that will lead to a
smooth movement. With this simple method, we have to
set both Ki and Kd parameters to zero and increase Kp un-
til the system reaches an oscillating behaviour. Then, we
adjust the Ki parameter to stop the oscillation and finally
adjust Kd for a faster response.

Additionally, in order to complete the gesture control, we
need to ensure that the drone can automatically fly to the
front of the user. We designed the ’front to side’ control,
which consists of two actions: fly from the side to the front
of the user and rotate 90° to face the user.

3. Evaluation
To evaluate our modules we created a custom test

dataset, which consists of a person performing all the ges-
tures while rotating to simulate different views and altering
the lighting. Over the frames, the gestures are performed
with slight modifications concerning the angle and position
of the arm. 600 frames are recorded for each distance class,
which leads to 3000 test samples in total.

Gesture evaluation. The gesture accuracy depends en-
tirely on the joints estimations from OpenPose and the cor-
rectness of the gesture execution from the user. The overall
recognition accuracy of the gestures is 93.5%. The only
gesture, which is not so easily recognized is the ”Down”
gesture as it is physically more difficult to perform.

Distance evaluation. The distance estimation is evalu-
ated via the Mean Absolute Error (MAE) metric. The MAE
for all the distance classes is estimated at 17.75cm with a
mean standard deviation of 19.6cm. However, the farthest
distance classes contribute to a much larger MAE (e.g. for
c300, the MAE is 30.94cm).

4. Conclusion
The results from the evaluation show that despite the

hardware limitation of the DJI Tello drone, it is possible
to achieve a robust distance estimation as well as reliable
gesture recognition. The framework can control the drone
in real-time, enabling a natural and simple interaction. Due
to its modularity and extensibility, our framework could be
integrated and further developed in various others other ap-
plications.

References
[1] Tello: Ryze robotics. https://www.ryzerobotics.

com/tello.
[2] The world’s simplest facial recognition api for python and

the command line. https://github.com/ageitgey/
face_recognition.

[3] Tello SDK 2.0 User Guide. https://bit.ly/3qpnsI3,
2018.

[4] Mauro Avila, Markus Funk, and Niels Henze. Dronenaviga-
tor: Using drones for navigating visually impaired persons. In
Proceedings of the 17th International ACM SIGACCESS Con-
ference on Computers & Accessibility, pages 327–328, 2015.

[5] Juan Besada, Ivan Campaña, Luca Bergesio, Ana Bernardos,
and Gonzalo de Miguel. Drone flight planning for safe urban
operations. Personal and Ubiquitous Computing, pages 1–20,
2020.

[6] Francois Callou and Gilles Foinet. Method for the intuitive
piloting of a drone by means of a remote control, Nov. 26
2013. US Patent 8,594,862.

[7] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019.

4

https://www.ryzerobotics.com/tello
https://www.ryzerobotics.com/tello
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition
https://bit.ly/3qpnsI3

