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Motivation: Action Recognition in Open-Set Case Overview

= Goal: Identifying actions not previously Contributions

seen by the classifier (novelty detection)

Recognizing known actions

Supervised Action classes

Recognition Models
Assume a static set of action

INFORMED DEMOCRACY: VOTING-BASED NOVELTY
DETECTION FOR ACTION RECOGNITION
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= New model for detecting previously unseen action

= Generic framework for zero-shot action recognition in
generalized case (GZS)

Known

categories

. {\

. B (\

Activities -

Novelty

. Detection
Novel Action

Class

2 b

[ 3

-
« ¥ .

?

Closed-set case,
cannot handle real-world
scenario, where new actions
can occur at any time

Main ldea

= Leverage the predictive uncertainty of the classifiers

= Two Concepts: the Leader and it’s Council

= [eader: the classifier with the highest confidence score
(- votes for the predicted “known” category)

Generalizing to novel actions

= Council: a selected subset of the classifiers validates

Zero-Shot Action Recognition:
Using language models to recognize

Test set is limited to the
unseen classes -

the leader’s decision
Informed Voting: voting for novelty based on the

actions without any training data

Proposed Method

Measuring Classifier Uncertainty

= Monte-Carlo Dropout for approximation of Bayesian Neural
Network uncertainty [Gal et.al, 2016]

= Mean over M stochastic forward passes E(4;|x) instead of
deterministic Softmax estimates

= Uncertainty U(4;|x) is measured by the output’s variance
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Selecting the Leader and it‘s Council
= Select the Leader: A" = argmax,,_,E(A;|x)

= Select the Council C, * based the uncertainty statistics of
the classifiers for the current leader A™ on a held-out set:

classifiers uncertainty is privileged to the council

Informed Voting for Novelty
= For the leader A* and it’s council C,+, compute
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Deep Architecture

Inflated 3D CNN (I3D) architecture
as backbone [Carreira et al., 2017]

Voting Scheme Variants

= Informed Democracy: voting is *
privileged to the council

=  Uninformed Democracy: all .

Two FC-layers with MC-Dropout

Var(4;|A™) = %Zﬁzl(U(Aj\xn) — E[U(Ajlx)] )

= Select if Var(4;|4™) < c, where cis the credibility constant -

Experiments

Novelty Detection

HMDB-51 UCF-101
ROC AUC %PR AUC % ROC AUC % PR AUC %

Novelty Detection

Model
Baseline Models
One-class SVM 54.1 (£3.0) 77.9 (¥4.0) 53.6 (x2.0) 78.6 (+2.4)
GMM 56.8 (+4.2) 78.4 (+3.6) 59.2 (+4.2) 79.5 (+2.2)
Conventional NN Conf. 67.6 (+3.3) 84.2 (+3.0) 84.2 (+1.9) 93.9 (+0.7)

Our Proposed Model based on Bayesian Uncertainty

Dictator 71.8 (+1.8) 86.8 (£2.5) 91.4 (£2.3) 96.7 (+1.0)
Uninformed Democracy 73.8 (+1.7) 87.8 (£2.3) 92.1 (¥1.8) 97.2 (+0.7)
Informed Democracy 75.3 (+2.7) 88.7 (£2.3) 92.9 (+1.7) 97.5 (+0.6)

Generalized Zero-Shot Action Recognition

HMDB-51 UCF-101
U> U+S> US> U+S>
U+S U+S
ConSe 0.0 0.0 0.1 0.1
Devise 03 05 08 1.6

Zero-

Shot
Method U+S U+S

= /SL Methods: ConSE and
Devise
= Test has seen (S) and

ConSe + Novelty Detection

OCSVM 11.0 174 10.3 16.6
GMM 133 199 9.3 16.0
NN Conf. 11.0 18.6 12.2 20.9
ID (ours) 13.7 22.3 13.6 23.4

unseen (U) classes (GZS)
=  Pure ZSL methods fail
due to seen-classes-bias

Devise + Novelty Detection

= Qur novelty detection

leads to a clear OCSVM 8.9 14.7 8.7 143
GMM 106 16.7 7.3 12.9
improvement in GZS NN Conf. 8.7 15.1 10.1 17.7
ID (ours) 10.7 18.2 11.0 19.5

Sample output for M=100 forward
passes at test-time

classifiers voting .
Dictator: Leader‘s uncertainty

Examples of Informed Voting
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Dataset Details

= HMDB-51 and UCF-101 datasets for action recognition

= Ten splits into seen/unseen categories (26/25 for HMDB-51 and 51/50 for UCF-101).

= Set containing the seen classes is split into training (70%) and testing (30%)

= Baseline models trained on 13D model features (last avg. pooling layer)

= Dataset splits will be provided at
cvhci.anthropomatik.kit.edu/~aroitberg/novelty_detection_action_recognition



