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Abstract—We present an audio-visual scene analysis 

system, which is implemented and evaluated on the 

ARMAR-III robot head. The modular design allows a fast 

integration of new algorithms and adaptation on new 

hardware. Further benefits are automatic module de-

pendency checks and determination of the execution order. 

The integrated world model manages and serves the ac-

quired data for all modules in a consistent way. The system 

has a state of the art performance in localization, tracking 

and classification of persons as well as exploration of whole 

scenes and unknown items. We use multimodal pro-

to-objects to model and analyze salient stimuli in the envi-

ronment of the robot to realize the robots’ attention. 

Keywords: scene analysis system, hierarchical entity-based 

exploration, audio-visual saliency-based attention, world 

model, humanoid robot head. 

I. INTRODUCTION 

For humanoid robots, the multimodal perception of 

the environment is an essential and challenging task. 

Beside the perception of everyday objects and persons, 

the cognition of salient stimuli, i.e. acoustic events and 

visual attractable objects, is important for the robot at-

tention. New and previously unknown objects have to be 

detected and further analyzed, to be able to recognize 

them again. An information storage for detected objects 

(and persons) and a-priori information has to be realized. 

To solve the described tasks, we developed a modular 

audio-visual scene analysis and attention system. 

Acoustic and visual sensors provide the input data for all 

further processing steps: We combine different algo-

rithms for person detection and identification (face de-

tection and identification; acoustic speaker localization 

and identification). The object localization and classifi-

cation is done using specific object characteristics (e.g., 

color, contour and texture). The overt attention is real-

ized using saliency-based proto-objects. To this end, 

visually salient objects and acoustically salient events are 

detected and represented as proto-object hypotheses. 

Subsequently, a spatio-temporal clustering fuses the 

hypotheses to proto-objects. Proto-objects with a high 

saliency attract the attention of the robot and trigger a 

further analysis. A hierarchical knowledge-driven anal-

ysis in combination with an entity-centered world model 

provides a consequent information refinement and keeps, 

in combination with a particle filter-based tracking and 

an aging algorithm, the system up-to-date. The modular 

structure, in combination with automatic module de-

pendency and execution order estimation, makes it pos-

sible to simply extent the system with new approaches 

and/or exchange existing algorithms with better ones. 

II. RELATED WORK 

The acquisition and fusion of information for scene 

analysis has been addressed for various application areas 

with different sensor setups throughout the years (e. g. [1, 

2, 3, 4, 5]; cf. [6]). In this paper, we give a detailed de-

scription of our system in continuation to [2] and in 

combination with our previous work about attention [7]. 

To this end, similar to human behavior (cf. [8]), we also 

consider information that is currently not available in the 

field of view of the robot, but available in the short-term 

memory of our world model. The analysis of scene ele-

ments (persons and items) and salient stimuli (e.g. 

acoustic events, visually prominent regions) are done by 

using a hierarchical, knowledge-driven analysis strategy 

(cf. [2]; [9]), which combines a bottom-up and top-down 

strategy (cf. [6] and [4], respectively). It is used in com-

bination with an entity-based world model that follows 

the approach described in [10]. An integrated tracking of 

world model entities makes it possible to detect changes 

as well as to distinguish novel entities from already at-

tended entities, which both can influence the entity 

analysis sequence as well as the duration and is inspired 

by the human behavior described in [8]. 

III. SYSTEM 

In this section, we provide a detailed description of 

the main system components: the entity-based world 

model and the system modules (III.A). Afterwards, we 

explain the hierarchical knowledge-driven analysis 

process of detected objects, persons or salient stimuli 

(III.B). Finally, we describe the algorithms used in the 

system for multimodal detection, classification and 

tracking of objects and persons as well as saliency 

estimation and give a brief overview of the employed 

head motion controls (III.C). 

A. System Architecture 

1) World Model: Our system architecture has a 

modular structure, which enables a flexible, exchangea-

ble, and extendable organization of the data flow and 

processing. In order to organize the data, we use an en-

tity-based world model that manages all necessary in-

formation in a consistent structure (see Fig. 1). For a 

clear description, we first introduce a consistent nomen-

clature: The system distinguishes between the real world 

and a representation of it in a world model. Persons and 

items (e.g. books, mixer) in the real world are summa-
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rized as elements, whereas their representations in the 

world model are named objects or entities. The term 

“objects” is only used as a synonym for items, if the 

context is totally clear. A salient stimulus (i.e. acousti-

cally salient event or visually attractable region) is rep-

resented by a proto-object and is a candidate for an en-

tity, that can be further analyzed (see Sec. III.B). 

The world model is split into several functional parts: 

The most important part of the world model is the set of 

available entities. They are representations of real world 

elements and consist of attributes/relations, summarized 

as “knowledge”, and associated data (see Fig. 1). Both 

are generated at run-time by the system modules (see Sec. 

III.A.2). The characteristics of each entity are described 

by its attributes. All attributes have a name, value and 

confidence. The latter is a reliability measure for the at-

tribute value. Relations are defined in form of geometric 

relations (e.g., isOn) or class relationships (e.g., 

isPerson). Furthermore, each entity has associated data, 

i.e. data that is assigned only to a specific entity and 

necessary to generate entity knowledge. Associated data 

has one producer module and multiple consumer mod-

ules. Additionally to the set of entities, the world model 

also includes so called unassociated data, which cannot 

be assigned to one specific entity. Examples for this as-

pect are sensor raw data or low-level data required by 

multiple entities. The last part of our world model is 

formed by the a-priori knowledge, e.g. geometric in-

formation about the environment or models to classify 

elements. 

We decide to represent salient stimuli in our world 

model as proto-objects, similar to our already existing 

entities and use them as candidates for our entities, i.e. if 

a proto-object is selected through the Focus-of-Attention 

(FoA) selection process (see [7]), it will be converted 

into an entity and analyzed accordingly (see Sec. III.B). 

The bases for proto-objects are acoustic and visual pro-

to-object hypotheses, which are fused using a 

spatio-temporal clustering (see Sec. III.C.1). The re-

sulting multimodal proto-objects have at least two at-

tributes: spatial location and saliency measure. The latter 

is important for the FoA selection process. The attention 

towards visually salient regions and acoustically salient 

events is important for a reactive robot. 

An important functionality of our world model is at-

tribute aging, which means if information about an at-

tribute is not confirmed within a certain period of time, 

the confidence of the attribute decreases. If the confi-

dence exceeds a deletion threshold and cannot be recon-

firmed before, the attribute is deleted. This can also 

happen for e.g. the identity of a person. If we can roughly 

track a person, but cannot reconfirm the identity, the 

confidence of the identity decreases until it is deleted and 

the entity represents only a person without an identity. 

2) Modules: Another important aspect of our system 

is its modularity. The modules are essential for the 

functionality of the scene analysis approach (see Sec. 

III.B). The system modules are organized in five task 

specific groups, i.e. detection/localization, classification, 

tracking, information fusion, and general purpose. The 

interactions and dependencies between modules in such 

a flexible system are hard to manage without suitable 

automatic mechanisms that solve the problem. Every 

module has two types of dependencies: Knowledge de-

pendencies specify the required information that entities 

need to provide in order to be processable by the module 

(e.g., specific entity classes, geometric relations), 

whereas data dependencies determine the data flow be-

tween the modules and are not necessarily associated to 

entities. Data dependencies then indicate an entity in-

dependent data flow, most importantly raw or 

pre-processed sensor data. To solve the dependencies, a 

directed acyclic graph is calculated for each dependency 

type and combined to form a global dependency graph. If 

the resulting graph is acyclic, a well-defined execution 

order of the modules exists and is calculated by applying 

topological sort [11]. The algorithm also determines 

parallel module execution paths, which are used for au-

tomatic module-level parallelization in order to optimize 

the system performance. An example for knowledge and 

data dependencies including the resulting execution or-

der can be found in Sec. IV.C. 

B. Hierarchical, Knowledge-Driven Analysis 

The analysis of each entity is hierarchically organized 

according to a coarse-to-fine strategy. During the analy-

sis, the level-of-detail of an entity increases (propor-

tionally to the number of analyzed entity attributes), 

whilst the degree-of-abstraction decreases, i.e. the next 

specialization step in the hierarchy is reached (see Fig. 2). 

To this end, the system dynamically acquires and fuses 

the necessary information about the entity attributes and 

stores them in the world model. Most importantly, this 

hierarchical mechanism is efficient as well as flexibly 

extendable, because specialized classification (and fu-

sion) modules can be easily added – with respect to their 

 
Fig. 1  Overview of the main system components, the naming and the 

relation between the real world and world model. The most modules 

are responsible for analyzing entities and keep the focus of attention. 

 
Fig. 2  Example shows the principle of the hierarchical analysis ap-

proach, where the blue attributes trigger a refinement in the hierarchy 

and the green attributes supply additional information about an entity.
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knowledge dependencies – to the hierarchy. Each mod-

ule is then responsible for the target attribute analysis and 

entity specialization at the corresponding node in the 

hierarchy. 

The knowledge-driven analysis is an efficient way to 

decide which module needs to be executed at a specific 

point in time. More precisely, from the already identified 

class relationships of an entity, a list of available attrib-

utes is generated. Each of these attributes can be created 

from one or more classification modules and the system 

automatically activates the corresponding classification 

and information fusion modules. If the attribute confi-

dence exceeds a pre-defined classification threshold, the 

analysis of the next step in the hierarchy is triggered. 

Consequently, new modules are activated, new attributes 

are generated, and the level in the hierarchy increases 

again. This is repeated until there are no further special-

ization steps currently available in the hierarchy or the 

analysis is stopped by another high-level process. 

Fig. 2 shows an example for person and item pro-

cessing. The first step starts always with the detection 

and the creation of a basic entity (“point”) with a position 

attribute. Now all modules that can operate on this basic 

entity are activated. The estimation of a new attribute 

(“type”) is the next step. Subsequently, the confidence of 

the type raises and if it is high enough the next step in the 

hierarchical analysis is reached (in this example person 

or item). Depending on the type, new modules are acti-

vated for this entity, a further specialization can be done 

and new attributes are generated. The number of steps in 

the hierarchy and the available attributes depend on the 

available modules and can be extended in future appli-

cations. 

Additionally to the previously described analysis ap-

proach, a top-down mechanism is introduced, which is 

responsible to keep the balance between the exploration 

of the whole scene and the analysis of a specific entity. 

This is necessary, because the complete analysis of an 

entity can require a considerable amount of processing 

resources and, most importantly, time, which is espe-

cially critical in dynamic scenes. Thus, the time available 

to analyze each entity can be dynamically limited de-

pending on run-time constraints, the level of awareness, 

the type of each entity (e.g., person, item), and the 

number of available proto-objects. If the number of en-

tities and/or proto-objects is high, a subset can be 

marked – supported by the integrated tracking – for a 

further analysis at a later time. Furthermore, descriptions 

of unknown items can be acquired and added to the world 

model, e.g., via text input or multimodal interaction (cf. 

[12]). 

C. Algorithms 

We use a combination of various algorithms in our 

system for item localization and classification as well as 

person detection and identification. The applied ap-

proaches can be easily exchanged or new algorithms can 

be added to increase the performance or to add new 

functionalities. Generally, we are using a stereo-camera 

setup to be able to estimate a corresponding 3-D position 

for a given image position. Additionally, we use a mi-

crophone array in order to perform a 3-D localization of 

acoustic events (speech or object sounds). 

1) Saliency: In order to estimate the visual saliency of 

a scene we use quaternion discrete cosine transform 

(QDCT, see [13]) image signatures of a 4-channel image 

consisting of intensity, blue-yellow and red-green color 

opponents and motion (estimated as difference of two 

successive frames). Afterwards, we use the isophote 

curvature [14] to estimate regions with potentially high 

saliency. In contrast to that, the acoustic saliency is es-

timated using acoustic surprise (see [7]), which bases on 

Bayesian surprise and uses the detection of relevant 

changes in spectrogram of an audio signal. Subsequently, 

a localization of the sound source is performed using 

SRP-PHAT (see Sec. III.C.2). Both modalities create 

proto-object hypotheses as 3-D representations. After-

wards, a spatio-temporal fusion is used to estimate pro-

to-objects as candidates in the Focus-of-Attention selec-

tion process (see [7]). 

2) Acoustic localization/classification: In order to 

estimate the position of a sound source, we are using the 

time difference of arrival between each possible micro-

phone pairs of a microphone array. The combination of 

all pairs leads to a map of weighted possible source po-

sitions. The steered response power with phase transform 

(SRP-PHAT) is the algorithm behind this approach. We 

implemented an adapted SRP-PHAT version with an 

additional PHAT parameter β (SRP-PHAT-β, see [15]), 

which leads in average to a higher localization accuracy, 

but has a higher computational effort. The classification 

of speaker and object sounds are based on mel-frequency 

cepstral coefficients (MFCC) extracted from the audio 

signal of each microphone channel. Subsequently, the 

classification is performed using Gaussian Mixture 

models (see [16]) for objects. Persons are identified us-

ing adapted universal background models (UBM; see 

[16]). The general UBM represents an universal model 

for speakers. The model for a new person is generated by 

adapting the UBM with person specific MFCC features. 

3) Visual person identification/item classification: In 

order to detect a person, we use a MCT-based face de-

tector (see [17]) instead of the widely used Viola-Jones 

approach, because the first approach has a lower false 

alarm rate and the implementation is faster. The identi-

fication is done with a DCT-based approach comparable 

to [18], which is suitable for a defined closed data set 

scenario. For item detection and classification we use a 

combination of different algorithms, e.g. color histo-

grams, textures and location-based approaches. But it 

can easily be extended with new or more powerful algo-

rithms that may have higher computing requirements. 

4) Tracking: Another important part is the tracking of 

entities which depends on the entity type. For items, a 

very effective and simple median tracker is used. Ac-

cording to our experience, this tracker type is sufficient 

in most encountered situations in the lab. For persons, an 

interacting Markov Chain Monte Carlo Particle Filter 

(IMPF) is used [19], which is more suitable for quick and 

unpredictable person movements. The number of parti-

cles depends on runtime and accuracy constrains. More 

particles normally generate better results, but have higher 

computational costs. 
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5) Head Control: The gaze direction of the robot 

head is essential for the exploration of an unexplored 

environment. It is characterized by a two-dimensional 

vector of pointing angles, which can be expressed as a 

function of the head kinematics. Using the associated 

differential kinematics, a gaze control concept is im-

plemented, which allows the visual tracking of moving 

targets with unknown and arbitrary trajectory, using all 

available degrees-of-freedom (DoF) of a robot head, in 

order to obtain a natural human-like behavior. The real-

ized control concept is presented in detail in [20] and is 

composed by a feedback control action proportional to 

the pointing error and a feedforward control based on the 

predicted motion of the target. 

IV.  EXPERIMENTAL EVALUATION 

A. Setup 

We tested our system on two different hardware 

platforms (see Fig. 3). First, we have an experimental 

platform with two stereo cameras, a microphone array 

and a pan-tilt unit (PTU). Second, we evaluated the sys-

tem using the ARMAR-III humanoid robot head, which 

has a comparable sensor setup. We are using two stereo 

cameras in order to perceive the scene with different 

levels-of-detail. One stereo camera is used for near-field 

and the other for far-field image acquisition. A refer-

encing between the stereo cameras is able to find a cor-

responding element, detected in one camera, in the other 

camera. Detailed information for each platform is sum-

marized in Table I. 

B. Procedure 

The complexity of the system and the number of 

components is high, so that a detailed evaluation of every 

aspect of the presented system would go beyond the 

scope of this paper. Instead, we want to show selected 

functionalities of the system in a comprehensive de-

scription. We have evaluated our system with various 

combinations of items and persons in a scene and 

achieved good results. In this contribution, the multi-

modal perception of a person is the example for ex-

plaining all subsequent functionalities. In order to 

demonstrate the effective system approach, we finally 

show typical identification steps for a person with real 

data and the corresponding results for tracking. 

C. Results and Discussion 

1) Attention: The ability to react on salient stimuli is 

an important part of your system. However, we described 

and evaluated this behavior already in our previous work 

(see [7]). Summarizing it can be said, that we are able to 

detect visual salient regions using spectral whitening of 

images and detect acoustically salient events using 

acoustic surprise. We showed that a subsequent align-

ment of the sensor towards salient stimuli helps to im-

prove the perception quality. In the last part of the eval-

uation, we used a complex scene as an example for de-

tection, tracking and prioritization of salient stimuli. 

2) Dependencies and Execution order: In this section, 

we want to show how the knowledge and data depend-

encies can be used to estimate the module dependencies 

and the execution order including parallel execution 

paths. An overview of the whole process shows Fig. 4. 

The first step is the acquisition of the sensor data, which 

is in our example the acquisition of a scene image from 

the camera and an audio frame from the microphone ar-

ray. The raw sensor data is stored in the enti-

ty-independent unassociated short-term memory of the 

world model. The next steps are the detection of faces in 

 

Fig. 3  Experimental hardware platforms used for the evaluation of 

the system. A stereo camera setup with microphones and pan-tilt 

unit (left) and the ARMAR-III humanoid robot head (right). 

TABLE I 

HARDWARE AND SOFTWARE PARAMETERS OF BOTH PLATFORMS 

 PTU sensor setup ARMAR-III head 

stereo cameras 

- focal lengths 

- resolution 

- frame rate 

2 

3.5 mm / 6 mm 

640×480 pixels 

30 fps 

2 

4 mm / 12 mm 

640×480 pixels 

30 fps 

microphone array 

- microphones 

- sampling rate 

 

6 omi-directional 

48 kHz 

 

6 omi-directional 

48 kHz 

degree-of-freedom 2 7 

 

 
Fig. 4  An example for person identification that shows the relationships between the modules, the data flow and the data as well as knowledge 

dependencies (*=value of previous step). This example shows the functional principle of the system and represents a part of the whole system. 
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the image and the detection of speech and other sounds in 

the audio frame using the appropriate modules (blue). 

Subsequently, we estimate the individual 3-D positions 

for a later tracking. All generated data is also stored in 

the unassociated memory. The third step is to decide 

whether the data belongs to new entities (and create 

them; magenta) or to already existing ones. In both cases, 

we assign the suitable data to the corresponding entities 

(cyan). All following modules use only associated data 

as well as knowledge and they are executed for each en-

tity once. The next step is to decide whether the entity is a 

person or an item (green). This is the first specialization 

step (see Fig. 2) and can be easily done for persons in the 

case of enough face detections and/or acoustic person 

classification, with a high confidence. In parallel, the 

position of each entity is tracked (green) over time in 

order to follow the movements and be able to assign the 

unassociated data in the next processing loop. In order to 

decide which person is visible in the camera or is 

speaking at the moment, two further modules for classi-

fication are executed (purple). They generate normalized 

classification scores for all available person models. The 

scores are used in the fusion process to estimate to per-

sons’ identity (red). This is the second specialization step 

(see Fig. 2). 

When we consider the dependencies shown in Fig. 4, 

we can see the different types: All arrows from and to the 

unassociated data block are the generated and required 

unassociated data dependencies of the modules. The 

same applies for the associated data and knowledge de-

pendencies of the entities. The numbers in brackets refer 

to the fields in the blocks and a star indicates data from 

the previous analysis loop. With this information, we can 

create a global dependency matrix and use topological 

sort (see [11]) to estimate the execution order shown in 

Fig. 5. Each line represents one time step and parallel 

executable modules are shown side by side. All entity 

dependent modules can be executed for each entity in 

parallel and within these also parallel, if the modules are 

independent (e.g., acoustic/visual person identity). 

3) Entity Analysis and Tracking: In order to demon-

strate the previously described functionalities, we pro-

vide the following results of the real system. As above, 

the task is the detection, identification and tracking of a 

person in a scene as an example for the whole approach. 

First, we want to show the detection and identification 

functionality. Therefore, we plotted in Fig. 6 the class 

attributes over time of the detected person (Benjamin). 

As one can see, the entity creation is done within a se-

cond and the confidence rises quickly. After two seconds, 

the entity type (person) can be estimated and the identi-

fication starts. In the next seconds, the system tries to 

identify the person, which is at the beginning sometimes 

wrong, because of only a few or bad detections, but the 

confidence of this statement is very low. Three seconds 

later, the correct person can be identified. When the 

person starts moving, the confidence of the identity may 

decrease by a small amount, because of the noisier sensor 

data. 

Second, the confidences for the most important per-

son attributes over time are shown in Fig. 7. Generally, 

the confidence of all attributes is high and the increase at 

the beginning is sharp. The identity is plotted (purple) to 

show the pure confidence and the relation to other at-

tributes. After five seconds the confidence exceeds the 

specified threshold. The estimated height of the person 

(cyan) starts also quickly and is nearly constant until the 

person is going for a short period into a kneeling position. 

The next attributes represent acoustic (red) and visual 

(green) presence of detections. If the person is not per-

ceivable, the confidence starts to decrease during the 

attribute aging. The last curve (blue) represents the ro-

bust confidence of the person position. 

Finally, we evaluated the tracking of the person. In 

Fig. 8, the trajectory of the person (red) for each dimen-

sion can be found, including the separate visual and 

acoustic detections (blue and green). Because of the 

higher accuracy of the visual detections and the higher 

variance of the acoustic localization, the particle filter 

has a sensor specific weighting of the detections. As it 

can be seen easily, a tracking of the person during the 

whole sequence is achieved. In Fig. 9 the same complex 

trajectory is shown from a different point of view. 

V.  CONCLUSION AND FUTURE WORK 

We presented a system for audio-visual scene analysis, 

which enables a saliency-driven exploration. The con-

cept of a world model centered approach, combined with 

an intelligent module-based processing, is the basis for 

the exploration and analysis process. The automatic in-

tegration of new algorithms with the help of the proposed 

data and knowledge dependencies enables a flexible and 

extendable analysis approach. An automatic estimation 

of the execution order is a great benefit for a flexible 

extension of the system. As future work, we plan to add 

further aspects of attention and integrate an inquiring 

behavior. 
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Fig. 5  Module execution order and parallel execution paths are esti-

mated using topological sort of data and knowledge dependencies. 

Only-entity-dependent modules can be additionally parallelized, by 

executing the paths for each entity at the same time. 
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Fig. 6  Class confidences for the detected person (benjamin) within the 

first 30 seconds (includes false classifications with low confidence). 

 
Fig. 7  Attribute confidences for identity, height, acoustic observation, 

visual observation and position (from the top to the bottom). 

 
Fig. 8  The persons’ trajectory for each dimension including the 

acoustic localizations (with a higher inaccuracy) and face detections. 

 
Fig. 9  The persons’ trajectory including the acoustic localizations and 

the face detections (top view). 
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