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Abstract— We extend our work on an integrated object-based
system for saliency-driven overt attention and knowledge-driven
object analysis. We present how we can reduce the amount
of necessary head movement during scene analysis while still
focusing all salient proto-objects in an order that strongly
favors proto-objects with a higher saliency. Furthermore, we
integrated motion saliency and as a consequence adaptive
predictive gaze control to allow for efficient gazing behavior on
the ARMAR-III robot head. To evaluate our approach, we first
collected a new data set that incorporates two robotic platforms,
three scenarios, and different scene complexities. Second, we
introduce measures for the effectiveness of active overt attention
mechanisms in terms of saliency cumulation and required head
motion. This way, we are able to objectively demonstrate the
effectiveness of the proposed multicriterial focus of attention
selection.

Index Terms— active perception, saliency-based overt atten-
tion, and scene exploration

I. INTRODUCTION

Attention describes the cognitive process responsible for

focusing the processing of sensory information onto poten-

tially relevant and thus salient stimuli. Specifically, covert

attention refers to the process of focusing the perception

on salient stimuli to facilitate real-time processing despite

limited computing capacities, while overt attention refers

to the act of directing the sense organs towards selected

salient stimuli in order to optimize the perception quality.

Since both aspects are crucial for autonomous robots in

complex, natural scenes, attention has attracted an increasing

interest in the field of robotics, mainly for saliency-driven

scene exploration and real-time sensor processing (see [1]).

However, pure saliency-driven determination of the order

in which the salient stimuli are attended often leads to

a high amount of ego-motion and erratic motion patterns.

Consequently, this leads to high energy costs, wear-and-tear,

longer exploration times, and oftentimes artificially looking

head motion patterns. Thus, it is necessary to introduce a

certain amount robot “laziness” to reduce the energy costs

and wear-and-tear, and that may also lead to more natural-

like head motion sequences.
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We extend our previous work described in [2], which

introduced a multimodal attention system for object-based

audio-visual scene exploration and analysis. In this contri-

bution, we integrated adaptive predictive gaze control [3]

to control a kinematically redundant robot head, i.e. the

ARMAR-III humanoid head, generate natural-looking head

motion patterns, and take advantage of a new visual saliency

algorithm that now also integrates the important influence

of motion saliency (see [4]). Most importantly, we present

a “lazy” approach of saliency-based scene exploration of

newly entered rooms that reduces the amount of necessary

(head) ego-motion while it strongly favors to attend the most

salient proto-objects as soon as possible. To evaluate our

approach, we created a novel data set that consists of 60

recordings (2 sensor setups, 3 scenarios, and 2×(15+10+5)

scenes; 36GigaByte of data). Additionally, we introduce

two evaluation measures, i.e. the normalized cummulated

saliency and normalized cummulated joint angle distances,

as objective measures for specific aspects of active overt

attention. This way we are able to show that we can attend to

the proto-objects in a scene in an order that still favors proto-

objects with a higher saliency while drastically reducing the

amount of head servo motion.

II. RELATED WORK

Due to the practical relevance of attention for autonomous

robots in complex natural environments, computational at-

tention models have attracted an increasing interest in the

field of robotics during the last decade (e. g., [2], [5]–[11]).

Accordingly, there exists a wide range of different attention

models and the selection of the saliency definition heavily

influences which signal components attract the attention.

Since reviewing the existing literature on visual saliency

models is beyond the scope of this paper, we have to

refer interested readers to recent surveys of computational

visual attention models (e.g., [1] and [12]). We use a visual

saliency model based on the signature of the DCT trans-

formed quaternion-image [13], [14], which provides state-

of-the-art performance in human gaze point prediction and

is extremely run-time efficient to compute. As input for the

QDCT, we use a quaternion image composed of intensity,

color opponents, and motion (see [15]). In coherence theory

of visual cognition, proto-objects refer to volatile units of

information that can be accessed by selective attention and

later validated as actual object [16]. However, it is difficult

to determine the image region that approximates the extent

of a (proto-)object at the attended location (see [16]). To

this end, we analyze the isophote curvature (see [2]) of
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Fig. 1: Schematic system overview: The visually and auditory salient signal components are determined (Sec. III-B.2 and

III-B.3) and represented in a 3-D Gaussian model (Sec. III-B.1). Afterwards, these salient auditory and visual proto-object

hypotheses are clustered and fused (Sec. III-B.4) in order to enable multimodal focus of attention selection and scene

exploration (Sec. III-C).

the saliency map in order to determine salient regions and

roughly approximate the extent of the proto-object region

[2].

In contrast to visual saliency, few models to determine

salient auditory signals have been proposed that are suitable

for robotics applications (e.g., [2], [17], [18]). To this end,

we introduced auditory surprise in [2], which is based on the

accumulated Bayesian surprise [19] of all frequencies. This

model is fast to compute and – according to our experience

– it reliably and robustly detects auditory salient events.

Saliency-based overt attention, i.e. directing the robot

sensors towards salient stimuli, and saliency-based scene

exploration has been addressed by several authors (e. g. [2],

[6], [7], [11], [20]). However, most state-of-the-art systems

only consider visual attention (e. g. [6], [11]), which makes it

impossible to react on salient events outside the visual field

of view (see [21]). In contrast, we consider auditory data

and use a parametric model suitable for audio-visual saliency

fusion [2], which is most closely related to the approaches

presented in [7] and [21]. When realizing overt attention it

is important to consider that each shift of the overt focus

of attention leads to ego-motion, which partially renders the

previously calculated information obsolete (see [11]). Thus,

it is necessary to enable storing and updating the saliency

as well as object information in the presence of ego-motion.

To this end, we use a Cartesian 3-D reference coordinate

system which is attached to a prominent point of the scene

(see [2]; see [22], [23]). This is most similar to the 2-D grid

representation that was applied in [6] and differs from most

related work that typically uses ego-centric representations

such as, most importantly, an ego-sphere (e. g. [7], [20]).

In many publications on overt attention (see, e.g., [2],

[5], [7], [24]), the order in which the objects in the scene

are attended is only based on the saliency. To this end, in

each focus of attention selection step, the location with the

highest saliency gains the focus of attention and an inhibition

of return mechanism ensures that salient regions not visited

twice. However, in many situations, this leads to extensive

head motion and thus on real robotic platforms a high energy

consumption, wear-and-tear, and a longer time to attend all

objects due motor/servo speed limitations. Furthermore, the

sometimes erratic head motions oftentimes does not resemble

human behavior. Consequently, it is necessary to take other

aspects into consideration when deciding which location to

attend next. For example, in [6], [8], [25] additional top-down

parameters introduced (e.g., task specific or frontier-based

exploration parameters). Most related to our work, in [26]

and [27] rating functions for object search are used, such as,

e.g., a motion cost function for sensor alignment.

Information acquisition and fusion for scene analysis using

different sensor setups and modalities has been addressed

throughout the years for various application areas (e. g. [21],

[23], [28]–[31]; see [32]). In this paper, we extend our

previously proposed concept of multimodal, saliency-based,

iterative scene exploration and analysis [2] using a multi-

objective exploration path approach that determines the ob-

ject analysis order during the exploration process. To this

end, similar to human behavior (see [33]), we also consider

saliency information that is currently not available in the

field of view of the robot, but in the short-time memory

of our world model. In order to analyze attended regions,

we use a hierarchical, knowledge-driven analysis strategy

(see [28]; [22], [23]), which combines a bottom-up and top-

down strategy (see [32] and [30], respectively) and is used in

combination with an object-based world model that follows

the approach described in [34]. An integrated tracking of

world model entities makes it possible to detect changes in

their saliency as well as to distinguish novel proto-objects

from already attended objects, which both can influence the

object analysis order as well as duration and is inspired by

reported human behavior (see [33]).

III. SYSTEM

A. System Architecture

1) System Organization and World Model: Our system

architecture (see Fig. 1) has a modular structure, which

enables a flexible, exchangeable, and extendable organization

of the data flow and processing (see [22]). In order to

organize the data, we use an object-based world model that



consistently manages a-priori knowledge in a static sub-

model and dynamically acquired information in a dynamic

sub-model (see [23]). The a-priori knowledge contains geo-

metric information about the environment, ontologies, and

previously trained classifier models of objects, object at-

tributes, and object classes. The dynamic model manages the

perceived information such as, e.g., detected (proto-)objects

and persons in the environment that are provided by the

perception modules at run-time.

2) Object Analysis: The target of the active head control,

i.e. overt attention, is to optimize the perception of the

current (proto-)object of interest. In our system, the visual

perception benefits from the higher level of detail provided

by a second stereo camera pair (foveal) with a narrower

field of view than the primary stereo camera pair that has

a wide viewing angle (peripheral). Furthermore, the auditory

perception benefits from the improved acoustic properties

of the aligned microphone array (see [2]). The improved

perception can subsequently be exploited by the applied

object analysis algorithms. Therefore, we initialize an entity

with the information of the current proto-object in the world

model and start the hierarchical, knowledge-driven analysis

described in [22].

3) Top-down Control: A top-down mechansim is respon-

sible to keep the balance between exploration and analysis.

This is necessary, because the complete analysis of an object

can require a considerable amount of processing ressources

and, most importantly, time, which is especially critical

in dynamic scenes. Thus, the time available to analyze

each object is dynamically limited depending on run-time

constraints, the level of awareness, the type of each entity

(e.g., person, object), and the number of proto-objects on the

exploration path. If the number of proto-objects is very high,

several objects can be marked – supported by the integrated

tracking of proto-objects – for a further analysis at a later

time. Furthermore, descriptions of unknown objects can be

acquired and added to the world model, e.g., via text input

or multimodal interaction (see [10]).

4) Head Control: The gaze direction of the robot head is

characterized by a 2-dimensional vector of pointing angles,

which can be expressed as function of the head kinematics.

For the ARMAR-III robot head, a gaze control concept is

implemented that uses differential kinematics, which allows

the visual tracking of moving targets with unknown and arbi-

trary trajectory. Additionally, a natural human-like behavior

is obtained by specifically applying all available degrees of

freedom (DoF) of the robot head (see [3]).

B. Saliency Representation, Estimation and Fusion

1) Proto-Objects: Visually salient regions and auditory

salient events in the perceivable space of the sensors lead to

a set of auditory and/or visual proto-object hypotheses

{h1, . . . , hN} = H = HA ∪HV , (1)

where each hypothesis hi is a 3-tuple consisting of saliency

shi
, spatial mean µhi

as well as spatial variance Σhi

hi = (shi
,µhi

,Σhi
) ∈ H . (2)

Fig. 2: Left-to-right: original scene, saliency without motion

component, and saliency with motion component.

Thus, every proto-object hypothesis hi is represented in a

consistent Gaussian notation

fG
hi
(x) =

shi
√

(2π)3|Σhi
|
e
− 1

2 (x− µhi
)TΣ−1

hi
(x− µhi

)
.

(3)

Finally, we fuse all proto-object hypotheses of one salient

region and/or event using multimodal spatio-temporal fusion

(see III-B.4) to create a new proto-object o = (so,µo,Σo).

2) Visual Saliency: The visual saliency defines which

image regions are interesting, because they are likely to

contain objects of interest. We use the image signatures

of the quaternion DCT transformed image to calculate the

visual saliency [13], [14], see Fig. 2, which provides state-

of-the-art performance and can be calculated in less than

0.5ms per image. As quaternion image we use a combined

quaternion-based representation of the image intensity, red-

green and blue-yellow color opponents and an additional

motion component. The latter is calculated using difference

images. In order to determine the salient object regions in the

visual saliency map, we analyze the local isophote curvature

and estimate the peaks including their spatial extent and

saliency value (see [2]). Using the stereo-camera setup, we

are able to approximate the parameters for a proto-object

hypothesis hi = (shi
,µhi

,Σhi
) for each salient peak.

3) Auditory Saliency: We apply the well-known approach

of Bayesian Surprise [19] to audio signals in order to

detect acoustically salient events (see [2]). To this end, we

use the Short-Term Fourier-Transform of the audio signal

and incorporate the spectrogram of the windowed audio

signal over time in order to calculate the auditory surprise

SA(t). Subsequently, a localization of each acoustic event is

performed with the well-known steered response power with

phase transform (SRP-PHAT) approach [35], which uses

the inter-microphone time difference of arrival. Afterwards,

we perform a spatial clustering in order to remove outliers

and improve the localization accuracy. Finally, we create

a proto-object hypothesis hi for each cluster with saliency

shi
= SA(t), spatial mean µhi

and spatial covariance Σhi
.

4) Multimodal Spatio-Temporal Fusion: To fuse the in-

formation of the acquired proto-object hypotheses, reduce

the influence of noise and create proto-objects as unique

representations in the world model, we perform a spatio-

temporal mean shift clustering [36]. Therefore, we interpret

each cluster c as a (saliency-weighted) Gaussian mixture

model, that consists of auditory and/or visual proto-object

hypotheses hj = (shj
,µhj

,Σhj
) ∈ c ⊆ H. This allows us
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Fig. 3: Left: An example to illustrate the different focus of attention selection strategies. The attention shifts for each path

are illustrated in the stitched image (only the nine most salient locations are shown and yellow squares mark the positions of

the objects). Right: A person starts talking and consequently attracts the focus of attention. Thus, while the robot analyzes

the proto-objects on the exploration path, an auditory salient event outside the visual field of view is detected and the gaze,

i.e. overt attention, shifts towards the event location. Subsequently, the motion of the book increases the visual saliency.

to split each cluster c into an auditory (cA = c∩HA) and/or

visual (cV = c ∩ HV ) sub-cluster and estimate the saliency

for each modality separately. Subsequently, we consider a

linear combination1 to integrate the audio-visual saliency

so =
1

2

(

∑

hk∈cA

wA
hk
fG
hk
(µo) +

∑

hl∈cV

wV
hl
fG
hl
(µo)

)

, (4)

using the modality specific weights wA
hj

and wV
hj

(analogous

to Eq. 5). Consequently, we use the spatial mean of every

proto-object hypotheses of the cluster to estimate the position

µo = E[c] =
∑

hj∈c

µhj
whj

with whj
=

shj
∑

hi∈c shi

. (5)

Finally, we determine the spatial variance of the cluster Σo

by iteratively fusing the variance of the hypotheses

Cj = Cj−1−Cj−1

(

Cj−1 +Σhj

)−1
Cj−1, ∀j=2,...,H (6)

with C1 = Σh1
and Σo = CH . Accordingly, we are able

to build a new proto-object o = (so,µo,Σo) with integrated

saliency so, spatial mean µo as well as spatial variance Σo.

Another important feature of the spatio-temporal fusion in

combination with the employed world model (see Sec. III-A)

is the unique object-based representation of salient regions

and events over time. To this end, we use the euclidean

distance metric to relate the current proto-object hypotheses

with already existing entities in the world model in order to

decide whether to create a new proto-object as world model

entity or fuse it with an already existing entity.

C. Focus of Attention Selection: The Exploration Gaze Path

After we determined the salient proto-objects, we need to

decide which of these objects should be attended in which

order. To this end, we determine an initial object exploration

order, i.e. the exploration path. We call it “initial”, because

in our implementation the analysis of an object as well as

the exploration path can always be interrupted and changed

1Note that there exist other biological plausible audio-visual integration
schemes (see [37]) that can be implemented in our model as well.

by newly detected salient regions, sudden changes in the

saliency of tracked objects, or higher-level processes.

1) Exploration Path Strategies: Iteratively attending the

most salient region in combination with inhibition-of-return

is the classical approach to saliency-based overt and covert

attention. However, this bottom-up approach has some draw-

backs as overt attention scheme for active sensing robots.

Most important, for application in robotics it is also im-

portant to provide smooth exploration paths that reduce the

amount of necessary ego-motion in order to save energy

and reduce wear-and-tear (i.e. to consider a certain form of

necessary motion “laziness”), to minimize the time to focus

the next and/or all relevant objects, and to provide a more

human-like scan path and consequently head movement in

unexplored environments. Accordingly, it is also necessary

to take into account the joint angle configurations that are

necessary to focus specific objects.

We define an exploration path EP ∈ SO as a permutation

of the proto-objects {o1, o2, . . . , oN} = O in the world

model that have to be attended, where SO is the permutation

group of O with |O| = N !. For example, the exploration

path EPexample = (o1, o3, o2, o4) would first attend object o1,

then o3 followed by o2, and finally o4. In the following, we

denote soi as the saliency of object oi and qoi represents the

robot’s joint angle configuration needed to focus object oi.

a) Saliency-based Exploration Path: All perceived

proto-objects in the scene (i.e., all proto-objects in the world

model, which also includes objects that are currently outside

the field of view) are sorted in descending order by their

saliency soi and analyzed correspondingly

EPsaliency = (oi1 , oi2 , . . . , oiN ) with soi1 ≥, . . . ,≥ soiN .

(7)

This is equivalent to the classical approach.

b) Distance-based Exploration Path: Alternatively, we

can also neglect the saliency and minimize the accumulated

joint angle distances that are necessary to attend all objects



on the exploration path in the specified order

EPdistance = arg min
EP∈SO

{

N
∑

k=1

∥

∥

∥
qoik − qoik−1

∥

∥

∥

}

, (8)

where qoik represents the joint angles needed to focus the

kth object on the exploration path, and accordingly qoik−1

is the joint angle configuration for the preceding object.

We define qoi0 as the initial joint angle configuration at

which we start the exploration using the calculated explo-

ration path. Here, the norm of the joint angle differences

dm,n = ‖qm − qn‖ measures the angular distance between

two joint configurations and is used as a measure for the

amount of necessary ego-motion. However, the underlying

problem of determining the minimal accumulated distance to

attend all objects equates to the traveling salesman problem

(TSP) and is consequently NP-complete2. In consequence,

we have to limit the computation to K local neighbors of

the currently focused object that were not already attended,

where K is chosen depending on run-time constraints. In our

current real-time implementation, we use K = 10, which

– in our experience – provides good reasults at acceptable

computational costs. By reducing the required amount of

ego-motion this strategy leads to more time and energy

efficient paths, but it does not take the saliency into account.

c) Balanced Exploration Path: We consider the ex-

ploration path estimation as a multi-objective optimization

problem, which allows us to combine the saliency-based and

distance-based approaches. Therefore, we can minimize a

single aggregate objective function

EPbalanced = arg min
EP∈SO

{

N
∑

k=1

fd(‖qoik − qoik−1
‖) · fs(soik )

}

,

(9)

where soik is the saliency value of the proto-object oik , fd
is a distance transformation function, and fs is a saliency

transformation function. In our current implementation, fd
is defined as identity function and fs(s;α) = s−α, i.e.

EPbalanced(α) = arg min
EP∈SO

{

N
∑

k=1

‖qoik −qoik−1
‖·s−α

oik

}

. (10)

This combined optimization function tries to balance the

tradeoff between far away proto-objects with a high saliency

and nearby proto-objects with a lower saliency, where the

choice of α influences the objective priorities. However,

this definition equates to an asymmetric TSP (i.e., due to

the object dependent saliency term the aggregate function’s

distance between two joint configurations is not identical in

each direction) and consequently we have to limit the search

for the next object to attend at each step to K local neighbors

of the currently attended and focused object.

2) Focus of Attention and Inhibition of Return: In princi-

ple, the proto-objects on the exploration path are focused and

analyzed successively in the specified order. To this end, the

2Please note that the additional requirement of the TSP to return to the
starting city does not change the computational complexity.

Fig. 4: Sample image stitches of the recordings in room 1

with the stereo camera PTU head (top) and in room 2 with

the ARMAR-III head (bottom).

spatio-temporal clustering and tracking (see Sec. III-B.4) in

combination with the integrated mean-shift tracking of world

model entities allow us to keep track of already attended

entities in the environment and thus directly enable object-

based inhibition of return. However, the exploration sequence

is interrupted and updated if one of the following events

occurs: a new proto-object with a high saliency has been

detected, a sudden increase of the saliency of an already

attended object entity occurred, or a higher-level process

prioritizes another proto-object than the currently analyzed

(see [2], [28]). In these cases, the corresponding proto-object

is attended and analysed directly in order to swiftly react

on salient events and allow top-down control of the overt

attention.

IV. EXPERIMENTAL EVALUATION

In our previous work [2], we demonstrated an improve-

ment of the visual as well as the auditory perception

when directing the sensors towards the object of interest.

Furthermore, we evaluated the focus of attention selection

and object-based inhibition of return in several scenarios.

However, the focus of attention selection strategy was solely

based on the saliency and did not take into account other

factors such as, e.g., the necessary head movement – which

costs time and energy – to attend the next object of interest.

Here, we want to show that using the proposed balanced

exploration path (see Sec. III-C), we can reduce the necessary

head movement while still focusing objects in an order

that strongly favors salient objects. For this purpose and to

“visually” compare the behavior of attention systems, we

collected a new data set that we will make publicly available.

A. Data Set

1) Description: Due to the active, scene-dependent nature

of overt attention, a quantitative evaluation method of the

behavior of active systems hardly exists (see [38]). This

is due to the fact that it seems impossible to reproduce

all factors such as, e.g., the environment, timing, stimuli,



Number of Recordings

scene PTU stereo setup ARMAR-III head
∑∑∑

breakfast 15 15 30
office 10 10 20
neutral 5 5 10

30 30 60

TABLE I: Structure of the data set

and implementation details that result in a specific (active)

behavior. However, when we focus on the problem of evalu-

ating intelligent exploration strategies, we can approach the

problem in two steps: First, we scan the whole room in a scan

sweep and calculate the locations of salient (proto-)objects

in the room. This is related to the human behavior of taking

a quick, initial glance around the room to get an overview

of an unknown environment. Second, given a starting con-

figuration, we can use the 3-D locations of the objects to

plan the head movement. The first step makes it possible

to assess how good our methods are able to determine

salient regions. Then, the second step makes it possible to

investigate the generated active behavior. This makes it also

possible to exchange methods in each step and investigate

the resulting behavior. For example, we can add noise to the

salient (proto-)object detections or exchange the underlying

definition of what is salient. Or, we can implement different

exploration path strategies and investigate their effectiveness,

which is what we will use our data set for in this paper.

Our data set consists of 60 recordings with a length of

30 seconds each, see Tab. I. We recorded the data set on

two hardware systems: a PTU stereo setup (see [2]) and the

ARMAR-III humanoid head (see [39]). We considered three

evaluation scenarios: office environments, breakfast scenes,

and neutral scenes. Neutral scenes are reference scenes that

are recorded in the same environment, but with a drastically

reduced amount of salient objects. The recordings have been

made on different days and at different times of day in

order to vary the lighting conditions, ranging from varying

natural to artificial lighting. The data set includes the stereo

images, the head joint angles, the depth maps, and further

information. The total volume of the data set is 36 GigaByte.

2) Sensor Setup: Both hardware platforms, i.e. the PTU

sensor setup and the ARMAR-III humanoid head (see Fig. 5),

share essentially the same sensor configuration. The wide

angle and foveal cameras have a focal length of 4mm and

12mm, respectively. The stereo baseline separation between

each camera pair is 90mm. The camera sensors provide a

resolution of 640×480 pixels at a frame rate of 30Hz. In the

evaluation, we only use the front and side omni directional

microphones. The distance between the side microphones is

approximately 190mm and the vertical distance between the

front microphones is approximately 55mm. The audio data

is processed at a sampling rate of 48 kHz. The ARMAR-III

head provides 7 degrees of freedom (DoF) and uses a cycle

time of T=30ms to control them (see [3]). The pan-tilt unit

has 2 DoF and is mounted on a tripod such that the cameras

are roughly on eye height of an averagely tall human in order

to reflect a humanoid view of the scene. The wide angle

(a) ARMAR-III robot head (b) PTU stereo setup

Fig. 5: The ARMAR-III humanoid robot head (a) and

PTU stereo setup (b) provide 7 and 2 degrees of freedom,

respectively. Both setups perceive their environment with 6

omnidirectional microphones (1 left, 1 right, 2 front, 2 rear)

and 2 stereo camera pairs (coarse and fine view, respectively).

and foveal cameras of the PTU setup have a focal length of

3.5mm and 6mm, respectively.

B. Evaluation Procedure and Measures

1) Audio-Visual Exploration and Motion: First, we will

discuss the influence of motion onto the visual saliency as

continuation of our last experiments [2]. To this end, we

performed a couple of additional experiments. To reliably

verify the behavior of the proposed system, we repeated all

experiments several times with varying external influences

like lighting, number of objects and clutter.

2) Exploration Path: To investigate the presented explo-

ration path strategies (see Sec. III-C), we use the presented

data set (see Sec. IV-A) and introduce two evaluation mea-

sures. First, we use the cumulated joint angles distances

(CJAD) as measure of ego-motion

CJAD(EP) =
1

N

N
∑

j=1

∥

∥qEPj
− qEPj-1

∥

∥ , (11)

where EPj is the index of the jth attended object of

exploration path EP, and qoi represents the joint angle

configuration that focuses object oi, see Sec. III-C.1.b. Since

we want to reduce the amount of necessary head motion, we

want to minimize the CJAD. To investigate the influence

of saliency on the exploration order, we use the cumulated

saliency (CS) of already attended objects

CS(i; EP) =
i

∑

j=1

sEPj
, i ∈ {1, 2, . . . , N} (12)

Here, a steep growing curve is desired, because it indicates

that objects with higher saliency are attended first. Since

the number of attended salient objects may vary depending

on the saliency distribution in the scene, we denote the

percentage of already attended objects as p, which makes

it possible to integrate over the curves of different scenes.

This way, we can calculate the area under the CS curve as

a compact evaluation measure, i.e.

ICS(EP) =

ˆ

CS(p; EP) dp . (13)
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Fig. 6: Left-to-right: The average cumulated saliency (left), the average cumulated joint angle distances (middle), and the

average area under the cumulated saliency curve (right) over all recordings in the database.

Additionally, we introduce two normalized versions of

CJAD and CS, i.e. NCJAD and NCS, respectively, that take

into account the spatial distribution of objects in the scene

as well as their saliency distribution:

NCJAD(EP) = CJAD(EP)−CJAD(EPdistance)
CJAD(EPsaliency)−CJAD(EPdistance)

(14)

NCS(EP) =
ICS(EPsaliency)−ICS(EP)

ICS(EPsaliency)−ICS(EPdistance)
(15)

Here, we use two facts and two observations for normaliza-

tion: The saliency-based exploration strategy will lead to the

fastest growth of CS, but is likely to have a high CJAD. In

contrast, the distance-based strategy will lead to the smallest

CJAD, but is likely to exhibit a slow growth of CS.

Additionally, to serve as a lower boundary for CS, we cal-

culate EPsaliency* which is the opposite strategy to EPsaliency

that selects the least salient unattended object at each shift.

Analogously, we calculate EPdistance* which greedily selects

the object with the highest distance at each step and is an

approximate (greedy) strategy opposite to EPdistance.

C. Results and Discussion

1) Audio-Visual Exploration – Motion: We introduced the

motion component (see Sec. III-B.2) to increase the saliency

of moving objects (see [15]), which is in accordance with the

human biological model (see [4]). Therefore, we evaluated

several sequences that involve motion, e.g., a person that

pours coffee into a cup or moves a book (see Fig. 2 and 3).

As already shown in [15], the chosen visual saliency model

proves to be a computationally efficient and reliable method

in practice. We always observed a drastic increase of the

saliency of moving objects, which consequently increases

the saliency of the corresponding proto-object and finally

results in a higher prioritization during the exploration path

estimation and an earlier attraction of the attentional focus.

2) Exploration Path I – saliency-based: First, we examine

the traditional saliency-based exploration path approach (see

Fig. 3, red; see Sec. III-C.1.a). As expected, this strategy

leads to the highest amount of head movement of all

strategies and highest growth of the cumulated saliency (see

Fig. 6). Accordingly, the larger amount of necessary head

movements leads to a slower exploration of the scene, but

fast analysis of the most salient objects.

3) Exploration Path II – distance-based: Secondly, we

analyze the exploration path which minimizes the angular
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Fig. 7: NCS and NCJAD over all recordings in the data set

using the balanced exploration path with varying α.

distances (see Fig. 3, green; see Sec. III-C.1.b). In the

comparison to the other strategies, this path does not take

the saliency into consideration and thus leads to the slowest

growth of the cumulated saliency (see Fig. 6). However, as

can be clearly seen in Fig. 6, the necessary angular distances

and thus the time for exploration is minimized. Please note

that the computational limitation of only using K local

neighbors for the TSP optimization (see Sec. III-C.1.b) leads

to a 25% longer distance in average (see [40]).

4) Exploration Path III – balanced: Finally, we consider

the balanced method, which tries to balance the tradeoff

between a small cumulated joint angle distance and an

efficient saliency-based exploration with a steep growth of

the cumulated saliency (see Fig. 3, blue; see Sec. III-

C.1.c). We can adjust the influence of the two aspects by

changing the operating parameters α. As can be seen, even

a relatively high α can already drastically reduce the CJAD

while providing a high ICS, see Fig. 6.

One question remains: What is an appropriate operating

parameter α∗? In our opinion, an optimal α∗ should be the

point where a further decrease of NCS no longer outweighs

a further increase of NCJAD, see Fig. 7. This is related

to the point where ICS(EPbalanced(α)) begins to approach

a constant value, i.e. where the growths ICS(EPbalanced(α))
starts to approach 0, see Fig. 6. In our experience, a good

heuristic to determine a good α∗ candidate is to select the

value of α where the NCS and NCJAD curves intersect, i.e.

NCJAD(EPbalanced(α
∗)) = NCS(EPbalanced(α

∗)) . (16)

Accordingly, we currently operate the presented system using

α = 2.2, see Fig. 7 and Tab. II.



CJAD ICS

EPdistance 0.2157 (72.6%) 130.0 (83.1%)
EPbalanced 0.2972 (100.0%) 156.5 (100.0%)
EPsaliency 0.7576 (254.9%) 161.8 (103.4%)

TABLE II: Comparison of the results for different explo-

ration path strategies (α = 2.2).

When α is set to 2.2, we achieve an average CJAD of

0.2972. For comparison the distance-based and saliency-

based strategy achieve a CJAD of 0.2157 (72.6%) and

0.7576 (254.9%), respectively. At the same time, we achieve

an average ICS of 156.5. Here, the distance-based and

saliency-based strategy achieve an average ICS of 130.0
(83.1%) and 161.8 (103.4%), respectively. Thus, we provide

an exploration strategy that effectively balances between

favoring highly salient objects and efficient head movements.

V. CONCLUSION AND FUTURE WORK

In our attention system, we combine adaptive predictive

gaze control, detection and localization of salient audio-

visual proto-objects, saliency-driven exploration with object-

based inhibition of return, and hierarchical knowledge-driven

object analysis. We presented a multi-criterial optimization

approach to generate efficient head motion for scene explo-

ration that combines the advantages of distance minimization

and a winner-take-all-like salient proto-object selection. To

evaluate our approach, we collected a novel data set and

demonstrated that we are able to achieve a good trade-off

between necessary head motion and attending the proto-

objects with the highest saliency first.
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