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Abstract— Multimodal attention is a key requirement for
humanoid robots in order to navigate in complex environments
and act as social, cognitive human partners. To this end,
robots have to incorporate attention mechanisms that focus
the processing on the potentially most relevant stimuli while
controlling the sensor orientation to improve the perception of
these stimuli. In this paper, we present our implementation of
audio-visual saliency-based attention that we integrated in a
system for knowledge-driven audio-visual scene analysis and
object-based world modeling. For this purpose, we introduce
a novel isophote-based method for proto-object segmentation
of saliency maps, a surprise-based auditory saliency definition,
and a parametric 3-D model for multimodal saliency fusion.
The applicability of the proposed system is demonstrated in a
series of experiments.

Index Terms— audio-visual saliency, auditory surprise,
isophote-based visual proto-objects, parametric 3-D saliency
model, object-based inhibition of return, multimodal attention,
scene exploration, hierarchical object analysis, overt attention,
active perception

I. INTRODUCTION

Attention is the cognitive process of focusing the pro-
cessing of sensory information onto salient, i.e. potentially
relevant and thus interesting, data. Since robots have limited
processing capabilities, attention has attracted an increasing
interest in the field of robotics, for example, to enable
efficient scene exploration and facilitate real-time processing
of the sensory information. Consequently, computational
models of attention based on visual and auditory saliency
gained increasing interest in theory and applications.

Efficient analysis of complex scenes under the presence
of the limited resources of a robotic platform is a key prob-
lem of computational perception. In this paper, we present
our system for saliency-driven scene analysis which com-
bines audio-visual saliency-based attention with hierarchical,
knowledge-driven object analysis and object-based world
modeling. We focus the processing onto salient proto-objects,
i.e. primitive object hypotheses that are rendered by salient
regions, present in the scene. To this end, we steer the
sensor setup towards these (proto-)object hypotheses in order
to optimize the acoustic and visual perception. The former
benefits from the improved sensor alignment with respect to
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Fig. 1. The Karlsruhe Humanoid Head (left; [1]) which serves as exemplar
for the employed experimental sensor platform (right): two wide angle
Point Grey Dragonfly2 cameras are mounted above two foveal Dragonfly2
cameras. Beyerdynamics MCE60 omnidirectional microphone pairs are
mounted on the front, side, and rear of the setup. The sensor frame is
mounted on top of a Directed Perception PTU-D46 pan-tilt unit.

sound sources while the latter takes profit of a complemen-
tary pair of cameras that provides a higher resolution and
less distorted images of the (proto-)objects (see Fig. 1). The
focused proto-object regions are subsequently validated and
analyzed using a multimodal hierarchical, knowledge-driven
approach. The information about analyzed objects as well
as the proto-object hypotheses are managed in an object-
based world model. This, in combination with a parametric
representation of the proto-object regions that is also used
for (multimodal) saliency fusion, enables us to realize object-
based inhibition of return.

The remainder of this paper is organized as follows: First,
in section II, we provide a brief overview of novel aspects
presented in this paper and related work. In section III,
we present our system which consists of four components:
the processing of visual and acoustic data, the saliency-
based fusion and exploration, and the hierarchical analysis of
object hypotheses. In section IV, we describe the performed
experiments and discuss the achieved results. We conclude
with a brief summary and outlook in section V.

II. RELATED WORK

During the last decade computational models of attention
have attracted an increasing interest in the field of robotics
(see, e.g., [2]–[9]) and diverse other application areas (see,
e.g., [10]–[14]). The definition of saliency defines which
parts of a signal attract the attention. Unfortunately, only
few applicable models for auditory attention exist (e.g., [12],
[13]). Most closely related to our work is the model described
in [12] which is based on the well-known visual saliency
model of Itti et al. [15] and, most notably, has been suc-
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Fig. 2. Schematic overview of the system components. First, the auditory and visually salient signals are determined and encoded in a parametric
Gaussian-based 3-D model (Sec. III-A and III-B, resp.). Subsequently, these auditory and visual proto-object hypotheses are clustered and the saliency is
fused to enable multimodal focus of attention (FoA) selection and scene exploration (Sec. III-C). To this end, we implemented an object-based inhibition
of return mechanism based on an object-based world modeling approach. By regarding each attended and focused proto-object as candidate world model
entity, we perform a knowledge-driven, hierarchical refinement and specialization.

cessfully applied for speech processing [13]. However, it is
computationally expensive and not perfectly suited to detect
salient acoustic events that attract overt attention. For this
purpose, we introduce a novel definition of auditory attention
based on Bayesian surprise [16]. In contrast, in computer
vision a huge amount of saliency models has been proposed
in recent years (see [11], [17]). Since reviewing them is
beyond the scope of this paper, we recommend reading
the survey of computational visual attention in [11]. In this
contribution, we apply a visual saliency model that is based
on spectral whitening of the image signal (see [3], [18]–[20]),
which exploits that the elimination of a signals’ magnitude
components accentuates narrow spatial events [21].

In coherence theory of visual cognition, proto-objects are
volatile units of information that can be accessed by selective
attention and subsequently validated as actual objects [22].
Accordingly, a common problem of computational visual
attention models is to determine the image region around
the selected focus of attention that approximates the extent
of a (proto-)object at that location (see [22]). To this end,
various conventional segmentation methods are applied (see,
e.g., [9], [18], [19], [22]–[25]), e.g. region growing [9]
and maximally stable extremal regions [3], [18], and even
feedback connections in the saliency computation hierarchy
have been introduced [22]. We introduce a novel method that
analyzes the isophote curvature (see [26]) of the saliency map
to approximate proto-object regions.

Saliency-based overt attention, i.e. the act of directing the
sensors towards salient stimuli, and scene exploration for
robotic applications has been addressed by several authors
in recent years (see, e.g., [3], [5], [7], [9], [27]–[29]). The
main difference between (covert) attention mechanisms that
operate on still images, i.e. mechanisms that focus the
processing of sensory information on salient stimuli, and
overt attention realized on robotic platforms is that shifting
the focus of attention in the latter leads to (ego-)motion,
which can – at least partially – render the previously cal-
culated saliency obsolete (see [9]). It is therefore necessary
to use representations that enable storing and updating the
information in the presence of ego-motion. To this end, most
previous art uses ego-centric models such as an ego-sphere

(e.g., [5], [28]). In contrast, we use a Cartesian 3-D reference
coordinate system which is attached to a prominent point
of the scene (see [30], [31]). Most similar to this model is
the 2-D grid representation that was applied in [3]. Most
state-of-the-art systems (e.g., [3], [7], [9]) only implement
visual attention, which has considerable drawbacks in case
of salient events outside the visual field of view (see [10]).
Therefore, we also consider acoustic sensor data and present
a parametric model suitable for audio-visual saliency fusion,
which is most similar to the work presented in [5] and [10].
However, in contrast to [5] and [10], we use a parametric
model without spatial quantization such as voxels [10] or
ego-centric azimuth-elevation maps [5].

Fusing the information of different sensors and sen-
sor modalities in order to analyze a scene has been ad-
dressed throughout the years in several application areas
(see, e.g., [30]–[34]). In this contribution, we integrate
saliency-driven, iterative scene exploration into the hierarchi-
cal, knowledge-driven audio-visual scene analysis approach
presented in [30]. This approach uses a combined bottom-
up and top-down strategy (see [34] and [33], respectively).
Therefore, the multimodal classification and fusion at each
level of the knowledge hierarchy is done bottom-up whereas
the selection of suitable classification algorithms is done in a
top-down fashion. The basis for this exploration and analysis
is an object-based world model (see [31]), which follows the
approach described in [35]. A notable feature of the chosen
object analysis approach is that it facilitates the dynamic
adjustment of object-specific tracking parameters, e.g. for
mean shift [36], depending on the classification result, e.g.
person or object specific parameters.

III. SYSTEM

In the following, we present the components of the pro-
posed system (see Fig. 2). First, we describe how the audio-
visual signals are processed (III-A and III-B). Therefore,
we explicate how salient signals and corresponding proto-
object regions are determined. Then, we explain how the
information about salient proto-objects is fused in our 3-D
parametric model (III-C). Finally, we describe how the proto-
objects in the selected focus of attention are analyzed (III-C).



Fig. 3. An example for auditory surprise: an approximately 10 second
audio sequence in which a person speaks and places a solid object on a
table at the end of the sequence. Top-to-bottom: the measured audio signal
(power), the corresponding auditory surprise (the range is clipped at 0.5 for
purpose of illustration), and the spectrogram (logarithmic scale).

A. Audio Processing

1) Auditory Surprise: Following the well-established ap-
proach of Bayesian Surprise in computer vision [16], we
introduce auditory surprise to detect acoustically salient
events (see Fig. 3). Therefore, we use the short-time Fourier
transform (STFT) to calculate the spectrogram G(t,ω) =
|F(t,ω)|2 = |STFT(t,ω)|2 of the windowed audio signal
a(t), where t and ω denote the discrete time and frequency,
respectively. In the Bayesian framework, probabilities cor-
respond to subjective degrees of beliefs in models which
are updated according to Bayes rule as data is acquired. At
each time step t, we incorporate the new data G(t,ω) to
update the prior probability distribution Pω

prior = P(g|G(t −
1,ω), . . . ,G(t−N,ω)) of each frequency and obtain the pos-
terior distribution Pω

post = P(g|G(t,ω),G(t− 1,ω), . . . ,G(t−
N,ω)), where N ∈ {1, . . . ,∞} allows additional control of the
time behavior by limiting the history to N 6= ∞ elements if
wanted. Using the Gaussian distributions as model, we can
calculate the surprise SA(t,ω) for each frequency

SA(t,ω) = DKL(Pω
post||Pω

prior) =
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where DKL is the Kullback Leibler Divergence and Eqn. 2 is
obtained according to the closed form of DKL for Gaussian
distributions (see [37]). Accordingly, an observed spectro-
gram element G(t,ω) is surprising if the updated distribution
Pω

post, which results from incorporating G(t,ω), significantly
differs from the prior distribution Pω

prior. Finally, we calculate
the auditory saliency SA(t) as the mean over all frequencies

SA(t) =
1
|Ω| ∑

ω∈Ω

SA(t,ω) . (3)

2) Localization: In order to localize acoustic events
in the scene, we apply the well-known steered response
power (SRP) with phase transform (PHAT) sound source
localization [38]. The SRP-PHAT algorithm uses the inter-
microphone time difference of arrival (TDOA) of sound
signals, which is caused by the different distances the sound
has to travel to reach each microphone, to estimate the
location of the sound source. To this end, the following inter-
microphone signal correlation function is used to determine
TDOAs τ of prominent signals at time t

Ri j(t,τ) =
ˆ

∞

−∞

ψ
PHAT
i j (t,ω)F ′i (t,ω)F ′j (t,ω)∗e jωτ dω , (4)

where F ′i and F ′j are the STFTs of the audio signal at mi-
crophone i and j, respectively. The PHAT specific weighting
function ψPHAT

i j (t,ω)= |F ′i (t,ω)F ′j (t,ω)∗|−1 can be regarded
as a whitening filter and is supposed to decrease the influence
of noise and reverberations. Subsequently, we can use the
estimated TDOAs to calculate the corresponding positions
in the environment.

Please note that the STFT F ′ of the sound source localiza-
tion uses a lower temporal-resolution than the STFT F of the
salient event detection. This is due to the fact that we require
real-time performance and, on the one hand, want to detect
short-timed salient events while, on the other hand, require
sufficiently large temporal windows for robust correlations.
Therefore, the window length of the localization is a multiple
of the salient event detections’ window length. Accordingly,
we have to aggregate the saliency of all detection windows
that are located within the localization window. We use the
maximum as aggregation function, because we want to react
on short-timed salient events, instead of suppressing them.

3) Parametrization: Since the sound source localization
tends to noisy detections, we perform spatio-temporal clus-
tering to remove outliers and improve the accuracy of the lo-
calization. Accordingly, we can use the mean of each cluster
o as location estimate µo and calculate the corresponding co-
variance matrix Σo. Consequently, each detected acoustically
salient (proto-)object hypothesis o is described by its saliency
so, the estimated location µo, and the co-variance matrix Σo,
which encodes the spatial uncertainty.

B. Video Processing

1) Visual Saliency: To calculate the bottom-up visual
saliency, we use a phase-based approach that was inspired by
[19] and [20]. However, since the influence of the spectral
residual is negligible in many situations when compared to
pure spectral whitening [20], we apply spectral whitening to
the image I(t) to obtain the saliency map

SV (t) = g∗FT−1
{

eiΦ(FT{I(t)})
}

(5)

with the Fourier transform FT and an optional smoothing
filter g. Please note that the image can either be given in
a quaternion-based multi-channel representation [20] or as
single-channel, e.g. gray-level, image [19].
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Fig. 4. Left-to-right: an exemplary scene image, the saliency map, the accumulator, and the first 10 salient proto-object regions that are selected by the
location-based inhibition of return (see Sec. III-B). The estimated Gaussian weight descriptors are depicted as overlay on the saliency map (illustrated
as circles with center µo and radii r ∈ {σo,2σo,3σo} in {red, green, yellow}, respectively. Please note that the value range of the saliency map and the
accumulator is attenuated for purpose of illustration.

2) Proto-Object Regions: In order to estimate the proto-
object regions, we analyze the isophote curvature (see [26])
of the saliency map (see Fig. 4). Here, isophotes represent
(closed) curves of constant saliency within the saliency
map. Assuming a roughly (semi-)circular structure of salient
peaks, we can then determine the center of each salient
peak as well as the corresponding pixels, i.e. defined as
pixels whose gradients point towards the peak center. This
way, we are able to efficiently extract salient regions, even
in the presence of highly varying spatial extent and value
range, partially overlapping peaks and noise. To this end,
we analyze the local isophote curvature κ of the saliency
map SV (x,y; t)

κ =−Scc

Sg
=−

S2
ySxx−2SxSySxy +S2

xSyy

(S2
x +S2

y)
3/2 , (6)

where Scc is the second derivative in the direction perpen-
dicular to the gradient and Sg is the derivative in gradient
direction. Accordingly, Sx, Sy and Sxx, Sxy, Syy are the
first and second derivatives in x and y direction, respec-
tively. Exploiting that the local curvature is reciprocal to
the (hypothetical) radius r of the circle that generated the
saliency isoline of each pixel, i.e. r(x,y) = 1/κ(x,y), we
can estimate roughly the location of each peak’s center.
Therefore, respecting the isophote orientation and direction,
we calculate the displacement vectors D = (Dx,Dy) with

Dx =
Sx
(
S2

x +S2
y
)

Scc
and Dy =

Sy
(
S2

x +S2
y
)

Scc
(7)

and the resulting hypothetical peak centers C = (Cx,Cy) with

Cx = Px−Dx and Cy = Py−Dy , (8)

where the matrices Px and Py represent the pixel abscissae
and ordinates, i.e. the pixel (x,y) coordinates, respectively.

Thus, we can calculate a saliency accumulator map AS in
which each pixel votes for its corresponding center. The most
salient regions, i.e. corresponding to the extents of the proto-
objects in the image (see, e.g., [19]), in the saliency map can
then be determined by selecting the pixels of the accumulator
cells with the highest voting score. By choosing different
weighting schemes for the voting, we are able to implement
divers methods for assessing the saliency of each region.
In our implementation, we use the saliency as weight and
normalize each accumulator cell by division by the number
of pixels that voted for the pixel. However, due to noise and

quantization effects, we additionally select pixels that voted
for accumulator cells within a certain radius. Unfortunately,
the initially selected pixels of our (proto-)object regions are
contaminated with outliers caused by (background) noise.
Therefore, we apply convex peeling (see [39]) to remove
scattered outliers and eliminate regions whose percentage of
detected outliers is too high.

To extract all salient proto-object regions that attract the
attention, we apply a location-based inhibition of return
(see [40]) mechanism on the saliency map (see, e.g., [5], [8],
[15], [18]). To this end, we use the accumulator to select the
most salient proto-object region and inhibit all pixels within
the estimated outline by setting their saliency to zero. This
process is repeated until no further prominent salient peaks
are present in the map.

3) Parametrization: For each extracted salient proto-
object region o ∈ O(SV(t)), we derive a parametric descrip-
tion by fitting a Gaussian weight function fo. We assume that
the Gaussian weight function encodes two distinct aspects of
information: the saliency so as well as the (uncertain) spatial
location and extent of the object µo and Σo, respectively.
Consequently, we decompose the Gaussian weight function:

f G
o (x) =

so√
(2π)D det(Σo)

exp
(
−1

2
(x−µo)

T
Σ
−1
o (x−µo)

)
(9)

with D = 2. Exploiting the stereo setup, we can estimate
the depth and project the 2-D model into 3-D. This way,
we obtain a 3-D model for each visually salient proto-
object region that follows the representation of the detected
acoustically salient events, see Sec. III-A.3. However, we
have to make assumptions about the shape, because the
spatial extent of the object in direction of the optical axis can
not be observed. Thus, we simplify the model and assume a
spherical model in 3-D and, accordingly, a circular outline
in 2-D, i.e. Σo = IDσo with the unit matrix ID.

C. Exploration and Analysis

1) Saliency Fusion: After the detection and parametriza-
tion of salient auditory and visual signals, we have a set
of auditory and visual proto-object hypotheses represented
in a Gaussian notation at each point in time t. To reduce
the influence of noise as well as to enable multimodal
saliency fusion, we perform a cross-modal spatio-temporal
mean shift clustering [36] of the auditory and visual Gaussian
representatives. Accordingly, we obtain a set of multimodal



clusters C(t), each of which can be interpreted as a (saliency-
weighted) Gaussian mixture model. Consequently, we esti-
mate the center of each cluster c ∈C(t) according to

µc = E[c] = ∑
ci∈c

wci µci with wci =
sci

∑ci∈c sci

(10)

and (µci ,σci ,sci) = ci ∈ c (see Sec. III-A.3 and III-B.3).
Subsequently, we can estimate the auditory sA

c and visual
sV

c saliency of each cluster

sA
c = ∑

ci∈c
1A(ci)wA

ci
f G
ci
(µc) and sV

c = ∑
ci∈c

1V(ci)wV
ci

f G
ci
(µc)

(11)
with

wA
ci
=

1A(ci)sci

∑ci∈c 1A(ci)sci

and wV
ci
=

1V(ci)sci

∑ci∈c 1V(ci)sci

, (12)

where 1A and 1V are indicator functions that encode whether
an element is an auditory or visual proto-object hypothe-
sis, respectively. Finally, we combine the audio and visual
saliency to obtain the cross-modal saliency sc. We follow
the results reported in [41] and use a linear combination for
cross-modal integration, which has been shown to be a good
model for human overt attention and is optimal according
to information-theoretical criteria [41]. However, other bio-
logically plausible combination schemes (see [41]) can be
realized easily. Since the cross-modal saliency depends on
the range of the saliency in each modality, we have to nor-
malize the range of the auditory and visual saliency to obtain
value ranges that are suitable for multimodal combination.
Hence, we empirically determined suitable parameters for
truncation and normalization of the value ranges.

2) Object-based Inhibition of Return: In order to itera-
tively attend and analyze the objects present in the scene, we
use the detected salient (multimodal) proto-objects to realize
an object-based inhibition of return mechanism. Therefore, at
each decision cycle, the most salient proto-object cluster that
is not related with an already attended and analyzed proto-
object gains the overt focus of attention. To this end, we use a
Euclidean distance metric to relate the proto-object clusters
with previously inspected object entities that are managed
in an object-based world model (see [31]). However, there
is an exception to this bottom-up selection rule: higher-level
functions can queue specific objects to regain the overt focus
of attention, which has a higher priority and thus allows an
integrated top-down control of overt attention.

3) Hierarchical, Knowledge-driven Proto-object Analysis:
After the sensors have been aligned with respect to the proto-
object in the current overt focus of attention, the foveal
cameras (see Fig. 1) are used to inspect the object. Therefore,
we extend the multimodal knowledge-driven scene analysis
and object-based world modeling system presented in [30]
and [31], to comply with the iterative, saliency-driven focus
of attention and exploration mechanism. Most importantly,
we replaced the detection and instantiation phase by regard-
ing proto-objects as candidates for world model entities.
The attended proto-object region is instantiated as entity
and subsequently hierarchically specialized and refined in
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Fig. 5. Left-to-right: exemplary image of an object in the coarse (top-left)
and fine (bottom-left) view, respectively. Mean sound source localization
error (in ◦) depending on the pan-tilt-orientation of the sensor setup (right).
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Fig. 6. A short temporal section of the attended x-y position (left) in the
cyclic focus of attention shift experiment (see [5]). The positions correspond
to the calibration marker locations (right) that lie on the same x-z plane.

a knowledge-driven model (see [30], [31]). The analysis
of each proto-object is finished, if no further refinement is
possible, which marks the end of the decision cycle and
initiates the next shift of attention. Within this framework,
every entity is tracked which is an important feature of
object-based inhibition of return.

IV. EXPERIMENTAL EVALUATION

A. Setup

The sensor setup that was used for the evaluation of the
presented system is shown in Fig. 1. The wide angle and
foveal cameras have a focal length of 6mm and 3.5mm,
respectively. The stereo baseline separation between each
camera pair is 90mm. The camera sensors provide a resolu-
tion of 640×480 px at a frame rate of 30Hz. In the evaluation
only the front and side omnidirectional microphones are used
(see Fig. 1). The distance between the side microphones is
approximately 190mm and the vertical distance between the
front microphones is approximately 55mm. The pan-tilt unit
is mounted on a tripod such that the cameras are roughly on
eye height of an averagely tall human in order to reflect a
humanoid view of the scene.

B. Procedure and Measures

First of all, to demonstrate that overt attention is beneficial
and justifies the required resources, we assess the impact of
active sensor alignment on the perception quality (Sec. IV-
C.1). While the improvement of the image data quality
of objects in the focused foveal view compared to the
coarse view is easily visible (see Fig. 5), the impact on
the acoustic perception depends on several factors, most
importantly the sensor setup. Consequently, as reference we
evaluate the acoustic localization error with respect to the
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Fig. 7. An example of multimodal scene exploration: The focus of attention is shifted according to the numbers in the stitched image of the scene (only
the first 15 shifts are shown). The yellow squares mark objects that attracted the focus solely due to their visual saliency whereas the blue squares (at 08
and 11) mark audio-visually caused shifts of attention. Furthermore, the green dotted lines (at 07) roughly indicate the trajectory of the moved object.

pan-tilt orientation of our sensor setup relative to sound
sources, e.g. household devices and speaking persons. For
this purpose, the sound sources were placed at fixed locations
and the localization was performed with pan-tilt orientations
of {−80◦, . . . ,80◦}×{−30◦, . . . ,0◦} in 10◦ steps (see Fig. 5).
We only consider the angular error, because in our experi-
ence the distance error is too dependent on the algorithm
parameters, implementation, and sampling rate.

We perform a couple of experiments to evaluate the
behavior of the proposed system, because a quantitative,
comparative method to evaluate the performance of an overt
attention system does not exist (see [9], [17]). In order
to obtain a reliable impression of the performance of our
system, we repeated every experiment multiple times with
varying environmental conditions such as, e.g., lighting,
number of objects, distracting clutter, and timing of events.
Inspired by the evaluation procedures in [5] and [9], we
investigate and discuss the performance of saliency-driven
visual (Sec. IV-C.2 and IV-C.3) as well as multimodal scene
exploration (Sec. IV-C.4 and IV-C.5).

C. Results and Discussion

1) Audio-Visual Perception: As can be seen in the error
curve depicted in Fig. 5, the angular localization error is
minimal if the head faces the target object directly. This can
be explained by the hardware setup in which the microphones
are nearly arranged on a meridional plane. Interestingly, the
curve shows a non-monotonic error progression, which is
mainly caused by the hardware that interferes with the acous-
tic characteristic and perception, e.g. the cameras heavily
influence the frontal microphones (see Fig. 1). Additionally,
in Fig. 5 we show an example of the coarse and fine, i.e.
foveal, view of a focused object to illustrate the improved
visual perception, i.e. increased level of detail.

2) Visual Exploration I – FoA Shift: In style of the exper-
iment described in [5, Sec. V–B], we mounted three salient
calibration marks on the walls of the office environment
and removed other distracting stimuli (see Fig. 6). In this
experiment, we benefit from an object-specific lifetime that
can be assigned to analyzed objects in our world model.
Each object-specific lifetime is continuously evaluated and
updated by, e.g., taking the visibility into account. Thus, if

an object has expired and is perceived as salient, it can regain
the focus of attention. Driven by the implemented inhibition
of return mechanism, the three salient marks are explored by
shifting the overt attention from one mark to the next most
salient mark that is not inhibited. As expected, the achieved
behavior corresponds to the cyclic behavior described in [5].
Each attended mark is focused by controlling the pan-tilt-
servos and the resulting trajectory is illustrated in Fig. 6.

3) Visual Exploration II – Object-based IoR: Once an
object has been analyzed, it is being tracked and inhibited
– as long as the object has not been marked for re-focusing
by higher-level processes – from gaining the overt focus of
attention. In order to test the object-based inhibition of return
mechanism, we perform experiments with moving objects in
the scene. For this purpose, we place movable objects in the
scene, start the exploration, and move objects after they have
been analyzed. As expected, smoothly moving objects do not
attract the focus, although they are moved to locations that
have not been salient before. Naturally, this behavior even
remains when motion is integrated as an additional saliency
cue. Interestingly, objects that abruptly change their expected
motion pattern attract the focus of attention again, because
the tracking fails. Although this could be seen as a technical
deficit, this behavior is desired for an attention-based system
and biologically motivated (see [14]).

4) Multimodal Exploration I – FoA Shift: Following the
experimental procedure in [5, Sec. V–C], we examine the
behavior in scenes with acoustic stimuli. Therefore, we
extend the scenario of the previous experiment (Sec. IV-C.3)
and add a single visible sound source, e.g. a blender or a
talking person. Our system explores the environment based
on visual saliency until the acoustic stimulus begins and the
sound source directly gains the focus of attention.

5) Multimodal Exploration II – Scene: Finally, we unite
the previously isolated experiments and assess the perfor-
mance on more complex scenes with several objects, object
motion, and auditory stimuli (please see Fig. 7 for an
exemplary scene). The system is capable of handling these
situations according to our expectations. Most importantly,
objects that are auditory and visually salient tend to attract
the saliency even if they are not the most salient point in
each modality. Furthermore, salient sound sources outside



the visual field of view compete with visually salient stimuli
and both are able to attract the overt focus of attention due
to the normalized value ranges (see Sec. III-C.1).

V. CONCLUSION AND FUTURE WORK

We presented and evaluated a multimodal attention system
for object-based audio-visual scene exploration and analysis.
Our model is based on bottom-up attention and the use of
proto-object regions as descriptors of salient (proto-)object
hypotheses in the scene. For this purpose, we introduced a
novel isophote-based saliency map segmentation as well as
a surprise-based definition of acoustically salient events. By
combining the proto-object regions with information about
already attended objects in a parametric 3-D model, we are
able to realize audio-visual saliency fusion and seamlessly
enable object-based inhibition of return. The implemented
inhibition of return mechanism allows to iteratively explore
and audio-visually analyze objects in the scene, which allows
to improve the perception through active sensor alignment
and limit the amount of required processing resources at
each point in time. However, several aspects remain as future
work. Most importantly, we plan to further investigate inte-
grated computational mechanisms for location- and object-
based inhibition of return.
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