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ABSTRACT

We investigate the spatial distribution of salient objects in
images. First, we empirically show that the centroid loca-
tions of salient objects correlate strongly with a centered,
half-Gaussian model. This is an important insight, because
it provides a justification for the integration of such a center
bias in salient object detection algorithms. Second, we assess
the influence of the center bias on salient object detection.
Therefore, we integrate an explicit center bias into Cheng’s
state-of-the-art salient object detection algorithm. This way,
first, we quantify the influence of the Gaussian center bias
on salient object detection, second, improve the performance
with respect to several established evaluation measures, and,
third, derive a state-of-the-art unbiased salient object detection
algorithm.

Index Terms— Salient object detection, spatial distribu-
tion, photographer bias, center bias

1. INTRODUCTION

Liu et al. [1] defined the task of salient object detection as the
binary labeling problem of separating a salient object from the
background. A salient object is defined as being the object in
an image that attracts most of the user’s interest. The decision
of what is the salient object in an image happens consciously
and can be articulated by a person, which stands in contrast
to gaze trajectories that occur while a person is viewing an
image. Accordingly, since salient objects are likely to attract
gaze, salient object detection and gaze prediction are closely
related yet substantially different tasks.

The natural tendency of photographers to place the ob-
jects of interest near the center of their composition in order
to enhance their focus and size relative to the background
(see [2]), has been identified as one cause for the often re-
ported center bias in eye-tracking data during eye-gaze studies
(see, e.g., [3-5]). As a consequence, the integration of a center
bias has become an increasingly important aspect in visual
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(b) Segmentation masks of the images shown in Fig. 1(a)

(c) Location scatter plot
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Fig. 1. Tlustration of the Achanta/Liu data set: example im-
ages 1(a), the corresponding segmentation masks 1(b), the
mean over all segmentation masks 1(d), and the scatter plot of
the centroid locations across all images 1(c).

saliency models that focus on gaze prediction (see, e.g., [6—8]).
In contrast, most recently proposed salient object detection al-
gorithms do not incorporate an explicit model of such a center
bias (see, e.g., [9-12]) and Borji et al. even argued against
the integration of such a bias [13]'. A notable exception and
closely related to our work is the work by Jiang et al. [14], in
which one of the three main criteria that characterize a salient
object is that “it is most probably placed near the center of the
image” [14]. The authors justify this characterization with the
“rule of thirds”, which is one of the most well-known princi-
ples of photographic composition (see, e.g., [15]), and use a
Gaussian distance metric as a model.

't is important to note that Borji et al. did not consider the effect of
potential implicit center biases that are already part of the algorithms.
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We go beyond following the rule of third and show that
the distribution of the objects’ centroids correlates strongly
positively with a centered, half-Gaussian distribution. In conse-
quence, we are able to provide a strong empirical justification
for integrating a center bias into salient object detection al-
gorithms. To demonstrate the importance, we adapt Cheng’s
salient object detection algorithm [12] to quantify the influence
of the photographer’s center bias on salient object detection.

2. MODEL

To investigate the spatial distribution of salient objects in
photographs, we use the segmentation masks by Achanta et
al. [9, 10] that mark the salient objects in 1000 images of the
salient object data set by Liu et al. [1]. More specifically, we
use the segmentation masks to determine the centroids of all
salient objects in data set and analyze the centroids’ spatial
distribution. The images in the data set by Liu et al. [1] have
been collected from a variety of sources, mostly from image
forums and image search engines. 9 users marked the salient
objects using (rough) bounding boxes and the salient objects in
the image database have been defined based on the “majority
agreement”.

The Center: Our model is based on a polar coordinate sys-
tem that has its pole at the image center. Since the images in
Achanta’s data set have varying widths and heights, we use
in the following normalized Cartesian image coordinates in
the range [0, 1] x [0, 1]. The mean salient object centroid lo-
cation is [0.5021, 0.5024] and the corresponding covariance
matrix is [0.0223, —0.0008; —0.0008, 0.0214]. Thus, we can
motivate the use of a polar coordinate system that has its pole
at [0.5, 0.5]T to represent all locations relative to the expected
distribution’s mode.

The Angles are Distributed Uniformly: Our first model hy-
pothesis is that the centroids’ angles in the specified polar
coordinate system are uniformly distributed in [—7, 7T].

In order to investigate the hypothesis, we use a Quantile-
Quantile (Q-Q) plot as a graphical method to compare prob-
ability distributions (see [16]). In Q-Q plots the quantiles of
the samples of two distributions are plotted against each other.
Thus, the more similar the two distributions are, the better the
points in the Q-Q plot will approximate the line f(x) = x. We
calculate the Q-Q plot of the salient object location angles
in our polar coordinate system versus uniformly drawn sam-
ples in [—7, 7], see Fig. 2 (left). The apparent linearity of the
plotted Q-Q points supports the hypothesis that the angles are
distributed uniformly.

The Radii follow a Half-Gaussian Distribution: Our second
model hypothesis is that the radii of the salient object locations
follow a half-Gaussian distribution. We have to consider a
truncated distribution in the interval [0, e], because the radius —
as a length — is by definition positive. If we consider the image
borders, we could assume a two-sided truncated distribution,
but we have three reasons to work with a one-sided model:
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Fig. 2. Quantile-Quantile (Q-Q) plots of the angles versus a
uniform distribution (left), radii versus a half-Gaussian dis-
tribution (middle), transformed radii (see Sec. 3.1) versus a
normal distribution (right).
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The variance of the radii seems sufficiently small, the “true’
centroid of the salient object may be outside the image borders
(i.e., parts of the salient object can be truncated by the image
borders), and it facilitates the use of standard statistical tests
(see Sec. 3.1).

We use a Q-Q plot against a half-Gaussian distribution to
graphically assess the hypothesis, see Fig. 2 (middle). The
linearity of the points suggests that the radii are distributed
according to a half-Gaussian distribution. The visible out-
liers in the upper-right are caused by less than 30 centroids
that are highly likely to be disturbed by the image borders.
Please be aware of the fact that it is not necessary to know
the half-Gaussian (or standard Gaussian) distribution’s model
parameters when working with Q-Q plots (see [16]).

3. EVALUATION

As for the graphical investigation of our hypotheses using Q-Q
plots (see Fig. 2), we use the manually annotated segmentation
masks by Achanta et al. [9, 10], see Sec. 2, to further investi-
gate our model hypotheses and quantify the influence of the
Gaussian center bias on salient object detection.

3.1. Empirical: Hypothesis Analysis

Although often data analysts prefer to use graphical methods
such as Q-Q plots to assess the feasibility of a model (see
Sec. 2), formal statistical hypothesis tests remain the most im-
portant method to disprove hypotheses. The goal of statistical
tests is to determine if the (null) hypothesis can be rejected.
Consequently, statistical tests either reject (prove false) or fail
to reject (fail to prove false) a null hypothesis. But, they can
never prove it true (i.e., failing to reject a null hypothesis does
not prove it true). However, we can disprove alternate hypothe-
ses and, additionally, we can use a set of statistical tests that
are based on different principles. If all tests fails, we have an
indicator that the hypothesis is potentially true.

We can quantify the observed linearity in the Q-Q plots
(see Fig. 2) to analyze the correlation between the model distri-
bution and the data samples using probability plot correlation
coefficients (PPCC) [16]. The PPCC is the correlation coeffi-
cient between the paired quantiles and measures the agreement
of the fitted distribution with the observed data. The closer the



correlation coefficient is to one, the higher the positive corre-
lation and the more likely the distributions are shifted and/or
scaled versions of each other. Furthermore, by comparing
against critical values of the PPCC (see [17] and [16]), we can
use the PPCC as an additional test, which is closely related to
the Shapiro-Wilk test. Furthermore, we can use the correlation
to test the hypothesis of no correlation by transforming the
correlation to create a t-statistic.

The Angles are Distributed Uniformly: We use Pearson’s
x? test [18] as a statistical hypothesis test against a uniform
distribution. The test fails to reject the hypothesis at signifi-
cance level o = 0.05 (p = 0.2498). Considering the circular
type of data, we use Rayleigh’s and Rao’s tests for circular uni-
formity and both tests fail to reject the hypothesis at & = 0.05
(p =0.5525 and p > 0.5, respectively; see [19]).

On the other hand, we can — for example — reject the
alternative hypotheses of a normal or exponential distribution
using the Lilliefors test [20] (p = 0 for both distributions?).

The obvious linearity of the Q-Q plot, see Fig. 2 (left), is

reflected by a PPCC of 0.9988°, which is substantially higher
than the critical value of 0.8880 (see [17]) and thus the hypoth-
esis can not be rejected. Furthermore, the hypothesis of no
correlation is rejected at oo = 0.05 (p = 0).
The Radii follow a half-Gaussian Distribution: In order to
use standard statistical hypothesis tests, we transform the polar
coordinates in such a way that they represent the same point
with a combination of positive angles in [0, 7] and radii in
[—o0,00]. According to our hypothesis, the distribution of the
transformed radii should follow a normal distribution with its
mode and mean at 0, see Fig. 2 (right).

Again we disprove exemplary alternate hypotheses: The
uniform distribution is rejected by the test against the critical
value of the PPCC as well as by Pearson’s x2 test at & = 0.05
(p = 0). The exponential distribution is rejected by Lilliefors
testat o = 0.05 (p =0).

We perform the Jarque-Bera, Lilliefors, Spiegelhalter’s,
and Shapiro-Wilk test (see [21], [20], [22] and [23]) to test our
null hypothesis that the radii have been sampled from a normal
distribution (unknown mean and variance). Subsequently, we
use a T-test to test our hypothesis that the mean of the radius
distribution is 0. The Jarque-Bera, Lilliefors, Spiegelhalter’s,
and Shapiro-Wilks tests fail to reject the hypothesis at signif-
icance level o = 0.05 (p = 0.8746, p = 0.2069, p = 0.2238,
and p = 0.1022, respectively). The correlation that is visible
in the Q-Q plot, see Fig. 2 (middle and right), is reflected
by a PPCC of 0.9987, which is above the critical value of
0.9984 (see [16]). The hypothesis of no correlation is rejected
at a = 0.05 (p = 0). Furthermore, it is likely that the mode of
the (transformed) radius is 0, because the corresponding T-test
fails to reject the hypothesis at significance level a = 0.05
with p = 0.9635.

2We report p = 0, if the tabulated values are 0 or the Monte Carlo approxi-
mation returns O or € (double-precision).
3Mean of several runs with N = 1000 uniform randomly selected samples.

Fig. 3. An example of the influence of the center bias on
segmentation-based salient object detection. Left-to-right: Im-
age, region contrast without and with center bias (RC and
RC+CB, resp.), and locally debiased region contrast without
and with center bias (LDRC and LDRC+CB, resp.).

3.2. Experimental: Salient Object Detection

Center Biased Saliency Model: We adapt the region contrast
model by Cheng et al. [12]. Cheng’s model is particularly
interesting, because it already provides state-of-the-art perfor-
mance, which is partially caused by an implicit center bias.
Thus, we can observe how the model behaves if we remove the
implicit center bias, which was neither motivated nor explained
by the authors, and add an explicit Gaussian center bias. We
modify the spatially weighted region contrast saliency equa-
tion (Eq. 1; see Eq. 7 in [12]) by introducing an explicit center
bias term (Eq. 2):

Ss(re) = we[ Y, Dy(rir)w(r)Dy(rizry)] (1)
Sl

+wc g(C(ry); Ox, Oy) with )
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Here, we use a convex combination to control the strength of
the influence of the center bias, i.e. wg +wc =1 (wg,wc €
Rar ). Dy(ri;77) is the spatial distance between regions r; and
ri, where o, controls the spatial weighting. Smaller values
of o, influence the spatial weighting in such a way that the
contrast to regions that are farther away contributes less to the
saliency of the current region. The spatial distance between
two regions is defined as the Euclidean distance between the
centroids of the respective regions using pixel coordinates that
are normalized to the range [0, 1] x [0, 1]. Furthermore, w(r;)
is the weight of region r; and D,(-;-) is the color distance
metric between the two regions (see [12] for more details).
Here, the number of pixels in r; is used as w(r;) = |r;| to
emphasize color contrast to bigger regions. C(r;) denotes the
centroid of region r; and g is defined as follows
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Interestingly, the unnormalized Gaussian weighted Eu-
clidean distance used by Cheng et al. [12] causes an implicit
Gaussian-like center bias, see Fig. 4, because it favors regions
whose distances to the other neighbors are smaller. Unfortu-
nately, this has not been motivated, discussed, or evaluated by
Cheng et al. In order to remove this implicit bias, we introduce
a normalized, i.e. locally debiased, distance function lv)s(rk; ri)



Fig. 4. Illustration of the implicit center bias in the method by
Cheng et al. [12]. Left: Each pixel shows the distance weight
sum, ie. Y, Dy(ry;77), to all other pixels in a regular grid.
Right: The average weight sum depending on the centroid
location calculated on the Achanta/Liu data set.

that still weights close-by regions higher than further away
regions, but does not lead to an implicit center bias

X Ds(rk;ri)
Dy(risr) = —_— 5
(i) Y., Ds(riri) ®
ie. Vr: Y Dy(rzri)=1 . (6)
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Baseline Algorithms: In order to compare our results, we use
a set of state-of-the-art salient object detection algorithms: The
Frequency-Tuned model (FT) by Achanta et al. [9], the Bonn
Information-Theoretic Saliency model (BITS) by Klein et
al. [11], the Maximum Symmetric Surround Saliency (MSSS)
model by Achanta et al. [10], and the Region Contrast (RC)
model by Cheng et al. [12] that uses Felzenszwalb’s image
segmentation method [24]. The latter is the original algorithm
we adapted in Sec. 3.2. In order to investigate the influence of
the implicit center bias in the region contrast model, we cal-
culate the performance of the locally debiased region contrast
(LDRC) model without and with explicit center bias (LDRC
and LDRC+CB, respectively). For comparison, we also evalu-
ate the region contrast model with the additional explicit center
bias (RC+CB). As additional baseline, we provide the results
for simple segment-based and pixel-based — i.e., using Eq. 4
for each pixel with respect to the image center distance and
constant variance — center bias models, i.e. wc = 1 (CBg and
CBp, respectively).

Measures: We can use the binary segmentation masks for
saliency evaluation by treating the saliency maps as binary
classifiers. At a specific threshold ¢ we regard all pixels that
have a saliency value above the thresholds as positives and
all pixels with values below the thresholds as negatives. By
sweeping over all thresholds min(S) < r < max(S), we can
evaluate the performance using common binary classifier eval-
uation measures.

Most commonly, precision-recall curves are used —e.g., by
Achanta et al. [9, 10], Cheng et al. [12], and Klein et al. [1 1]
— to evaluate the salient object detection performance. We
use five evaluation measures to quantify the performance of
the algorithms. We calculate the area under curve (AUC) of
the (interpolated) precision-recall curve (PR) and the receiver
operating characteristic (ROC) curve [25]. Complementary to
the PR AUC, we calculate the maximum Fj and F /03 seores.

Fg with = +/0.3 has been proposed by Achanta et al. to

Method F Fg  [PR [ROC HR
LDRC+CB | 0.8034 0.8183 0.8800 0.9624 0.9240
RC+CB | 0.7973 0.8120 0.8833 0.9620 0.9340
RC 0.7855 0.7993 0.8710 0.9568 0.9140
LDRC 0.7574 07675 0.8302 0.9430 0.8680
BITS 0.7342 07582 0.7589 09316 0.7540
MSSS 0.7165 0.7337 0.7849 0.9270 0.8420
FT 05995 0.6009 0.6261 0.8392 0.7100
CBs 05793 0.5764 0.5920 0.8623 0.6980
CBp 0.5604 0.5452 0.5638 0.8673 0.7120

Table 1. The maximum Fj score, maximum Fﬂ score, PR
AUC ([PR), ROC AUC (fROC), and Hit-Rate (HR) of the
evaluated algorithms (sorted ascending by Fp).

weight precision more than recall for salient object detection
[9]. Additionally, we calculate the hit-rate (HR) that measures
how often the pixel with the maximum saliency belongs to the
salient object.

Results: The performance of RC drops substantially if we
remove the implicit center bias as is done by LDRC, see Tab. 1.
However, if we add our explicit center bias model to the un-
biased model, the performance is substantially increased with
respect to all evaluation measures. Furthermore, with the ex-
ception of HR, the performance of LDRC+CB and RC+CB is
nearly identical with a slight advantage for LDRC+CB. This
indicates that we did not lose important information by debias-
ing the distance metric (LDRC+CB vs RC+CB) and that the
explicit Gaussian center bias model is advantageous compared
to the implicit weight bias (LDRC+CB and RC+CB vs RC).
Most interestingly, LDRC is the best model without center
bias, which makes it interesting for applications in which the
image data can not be expected to have a photographer’s center
bias (e.g., image data of surveillance cameras or autonomous
robots).

4. CONCLUSION

We investigated the spatial distribution of salient objects using
a combination of graphical methods and statistical tests. As
a result, we have shown strong empirical evidence that the
spatial distribution follows a centered half-Gaussian model.
This is an important insight, because it provides an empirical
justification for the bias towards the image center that can be
found in many salient object detection algorithms. To further
investigate the influence, we explicitly integrated the center
bias model in a state-of-the-art salient object detection algo-
rithm. This way, we could show that the center bias has a
significant, positive influence on the performance and were
able to, first, improve the state-of-the-art in salient object de-
tection and, second, derive an unbiased salient object detection
algorithm.
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