We propose a novel routing system for blind and partially sighted people on a shoreline level of detail.

We rely on openly available geolocation data.

The routing considers actual white-cane based movement along inner & outer shorelines.

We evaluate on 1870 routes between public transit stations and common destinations in an urban area.

The algorithm creates safer routes: avoid informal crossings, prefer accessible pedestrian signals and integrate available shorelines.

Our system improves the users' understanding of the upcoming route, the environment lying ahead and its impediments.

Routing Algorithm:

(1-3) initialize cumulative node (distance, priority) node for shortest connection and distance sorted priority queue

(4-5) while queue not empty, take closest node

(6) check all reachable shoreline or OSM route segments

(7) closest façade point for pu along li

(8-11) if distance to new node < current, store and add new node to queue

Directed Graph to Edge Expanded Graph Transformation:

DG used for routing algorithms, models distances between nodes in edges

Dual EEG allows to model Turn-Restrictions

Here: disallow right turn from e1 to e6 at intersection vi

Allows us to model different ways to cross the same intersection

0) "Please turn north until you reach a façade."
1) "Follow the façade to the left for 8m."
2) "Continue for 18m at 1 o'clock to cross a driveway."
3) "Follow the façade for 16m."
4) "Continue for 12m straight to cross a driveway."
10) "Turn right and follow the façade for 6m."
11) "Continue for 6m at 10 o'clock across the sidewalk."
12) "You have reached your destination."

Public transit station based route evaluation:
distance (d), % pedestrian walkway (r_w), # pedestrian signal (p_s), haptic/aural/pilot-tone APS (p_s_p), % real/virtual shorelines (r_c) and # informal crossings (c).

<table>
<thead>
<tr>
<th>d</th>
<th>r_w</th>
<th>p_s</th>
<th>p_s_p</th>
<th>p_s_p</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>621</td>
<td>26.4</td>
<td>2.327</td>
<td>0.205</td>
<td>0.019</td>
<td>0.702</td>
</tr>
<tr>
<td>654</td>
<td>46.4</td>
<td>4.819</td>
<td>0.338</td>
<td>0.070</td>
<td>1.501</td>
</tr>
<tr>
<td>655</td>
<td>45.5</td>
<td>4.709</td>
<td>0.320</td>
<td>0.814</td>
<td>0.615</td>
</tr>
</tbody>
</table>

Pre-Defined Weight Constraints: W_C > W_P > W_P_S > W_A_P_S > W_R > W_S > 1

Modified Cost Function: \(\delta_{pu,i} = \begin{cases}
 W_C \cdot |p_u - p_i|, & (p_u, i) \in S \\
 W_a(p_u) \cdot |p_u - p_i|, & (p_u, i) \in R \\
 \delta_{pu,i}, & \text{otherwise}
\end{cases} \)

Directed Graph to Edge Expanded Graph Transformation:

DG used for routing algorithms, models distances between nodes in edges

Dual EEG allows to model Turn-Restrictions

Here: disallow right turn from e1 to e6 at intersection vi

Allows us to model different ways to cross the same intersection

0) "Please turn north until you reach a façade."
1) "Follow the façade to the left for 8m."
2) "Continue for 18m at 1 o'clock to cross a driveway."
3) "Follow the façade for 16m."
4) "Continue for 12m straight to cross a driveway."
10) "Turn right and follow the façade for 6m."
11) "Continue for 6m at 10 o'clock across the sidewalk."
12) "You have reached your destination."

Public transit station based route evaluation:

distance (d), % pedestrian walkway (r_w), # pedestrian signal (p_s), haptic/aural/pilot-tone APS (p_s_p), % real/virtual shorelines (r_c) and # informal crossings (c).