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Abstract

In real-world environments, such as the vehicle cabin,
we have to deal with novel concepts as they arise. To this
end, we introduce ZS-Drive&Act – the first zero-shot activ-
ity classification benchmark specifically aimed at recogniz-
ing previously unseen driver behaviors. ZS-Drive&Act is
unique due to its focus on fine-grained activities and pres-
ence of activity-driven attributes, which are automatically
derived from a hierarchical annotation scheme. We adopt
and evaluate multiple off-the-shelf zero-shot learning meth-
ods on our benchmark, showcasing the difficulties of such
models when moving to our application-specific task. We
further extend the prominent method based on feature gen-
erating Wasserstein GANs with a fusion strategy for link-
ing semantic attributes and word vectors representing the
behavior labels. Our experiments demonstrate the effec-
tiveness of leveraging both semantic spaces simultaneously,
improving the recognition rate by 2.79%.

1. Introduction and related work
While deep learning methods have demonstrated impres-

sive results in various tasks [11, 24, 32], they are especially
data-hungry. Even with enough resources to annotate a
large dataset, we will never be able to capture all possible
categories. One way of handling novel classes on-the-fly is
Zero-Shot Learning (ZSL) [34]. ZSL connects high-level
semantic descriptions of the categories to a visual model
trained on the known classes to infer categories missing
visual training data. The semantic description can be e.g. a
word embedding of the category names or class-specific
attributes. Building models that generalize well to previ-
ously unseen classes is vital for applications using activity
recognition, which range from robotics [30] and surveil-
lance [9] to autonomous driving [17]. While zero-shot
action recognition has experienced major progress over the
past years [16, 27, 29, 36], existing works have focused
on recognition domains such as sports [21] or YouTube
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Figure 1: We leverage Drive&Act’s hierarchical annotations to
derive semantic attributes that model the composition of activities.

clips [12, 31]. In this work, we aim to study zero shot
recognition in context of driver observation and introduce
ZS-Drive&Act – the first zero-shot benchmark for activity
recognition inside the vehicle cabin. We propose to
leverage both textual representations of behavior labels
and activity attributes, which we derive from hierarchical
annotations of the Drive&Act [17] dataset and demonstrate,
that such fusion consistently improves the recognition rate.

Driver behavior recognition A variety of published works
have focused on driver observation, including algorithms
for driver gesture recognition [23], intention prediction [8,
10], distraction detection [4, 37] and fine-grained activ-
ity recognition [17, 25, 28]. With the exception of [15],
which leverages semi-supervised learning, and [28], which
aims to detect novel classes, all methods study the problem
in conventional closed-set supervised classification scenar-
ios. Despite its practicality, classifying driver behaviors not
present during training has not been considered yet and is
therefore the main motivation of our work.

Zero-shot action recognition Early works in zero-shot
action recognition [14] leverage semantic attributes that
describe the actions, followed by algorithms based on
textual descriptions [26], word-hierarchies [7] and word-
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embeddings [36]. Recent progress in generative approaches
for zero-shot image classification [5, 20, 33, 35] has sparked
improvements in zero-shot action recognition, establish-
ing a new state-of-the-art using feature generating net-
works [16]. Table 1 provides an overview of existing
benchmarks for zero-shot activity recognition, highlight-
ing their use of attributes and relevance for application.
The Olympic Sports [21] dataset comprises sports activi-
ties, HMDB51 [12] and UCF101 [31] cover a broad corpus
of more general actions, while all three datasets were col-
lected from YouTube. These previous benchmarks require
coarse recognition of very different activities (i.e. the scene
context is frequently enough for the prediction). Systems
in vehicles or industrial context often entail a static setting
(e.g. car interior or a robotic cell) and the differences be-
tween the activities happen on a far more nuanced scale.
Fine-grained recognition plays a key role in such systems
and is a major challenge in our ZS-Drive&Act benchmark.

Summary and contribution This work addresses zero-shot
activity recognition in context of driver observation and has
three major contributions. (1) We introduce and publicly
release the ZS-Drive&Act benchmark1, the first zero-shot
action recognition testbed aimed specifically at applica-
tions inside the vehicle cabin. ZS-Drive&Act is unique due
to the fine-grained nature of present activities (e.g. eating
and preparing food) and concise activity-aware attributes,
which depict the compositional nature of behaviors and are
dynamically derived from the hierarchical Drive&Act anno-
tations (Section 2). (2) To provide a strong benchmark, we
adopt and evaluate off-the-shelf zero-shot learning meth-
ods on our task covering both, attribute- and label-based
algorithms (Section 3). (3) We further propose multiple en-
hancements for feature generating Wasserstein GANs [16],
including a fusion scheme for linking the semantic spaces
of attributes and word embeddings which consistently im-
prove the recognition rate in all metrics (Section 3.2).

2. ZS-Drive&Act benchmark
To tackle the lack of zero-shot recognition datasets

for automotive applications, we extend Drive&Act [17] –
the largest existing dataset for conventional driver activ-
ity recognition, and introduce ZS-Drive&Act – the first
zero-shot benchmark in context of driver observation.
Drive&Act comprises 34 activities preformed by 15 sub-
jects during both, autonomous and manual driving and is
annotated with a hierarchical annotation scheme, where the
activities are further decomposed in atomic action units.

2.1. Task description

In zero-shot driver behavior recognition, during training,
a set of video instances Xs ⊆ X with associated labels

1https://github.com/Simael/zs-drive_and_act

from a set of seen classes Y s ⊆ Y are provided. The zero-
shot task entails recognizing a set of videos Xu ⊆ X asso-
ciated with an unseen set of categories Y u ⊆ Y , where the
zero-shot condition: Y s ∩ Y u = ∅ holds. To bridge the gap
between the seen and unseen classes, the models leverage a
semantic interpretation of each of the classes: ϕ : Y → S.

2.2. Evaluation protocol

Evaluation setting We split the 34 available activities in
Drive&Act into 14 seen classes for training, 10 unseen
classes for validation and 10 unseen classes for testing.
To mitigate the effects of particularly easy or hard splits,
we use the 14-10-10 splitting and repeat it 10 times ran-
domly. We adopt the top-1 accuracy averaged over the un-
seen classes as our evaluation metric (as in [34]) and report
the mean and standard deviation over the ten splits.

Visual data For the videos in ZS-Drive&Act, we imple-
ment two setups: (1) we follow [17] and operate on 3 second
video chunks containing some activity class and (2) we use
the entire segments of activities. The latter setup enables
the exploration of modeling activities with varying temporal
extend as the segments span over entire activities from be-
ginning to end. With multiple camera views and modalities
available in Drive&Act, we use conventional color videos.

Pre-training By pre-training the deep learning models for
conventional activity recognition on large-scale datasets
such as Kinetics-600 [2], the performance of the networks
increases considerably. Thus, we pre-train all networks on
Kinetics-600, however, to honor the zero-shot condition we
drop 56 classes related to the activities in Drive&Act.

Semantic spaces We place the Drive&Act dataset into
the zero-shot setting and offer results by leveraging the
Word2Vec [18, 19] representation of our classes. On top
of this, we describe a novel scheme to directly embed the
composition of activities into a semantic space.

2.3. Driver activities with attributes

The annotation hierarchy of Drive&Act (Figure 1) cov-
ers three levels: (1) coarse tasks – the overall task the sub-
jects were asked to solve, (2) fine-grained activities – fine
compositions of the tasks and, (3) the action-units – depict-
ing primitive interactions with the environment. In order
to derive a semantic space for the 34 fine-grained activi-
ties of the annotation hierarchy level (2), we leverage the
action-units provided in level (3). The action-units are de-
fined as triplets of motion-, object- and location patterns
and co-occur with varying activities in the hierarchy level
(2). Thus, the overlap of temporal annotations between the
34 fine-grained activities and the 374 different action-units
can give insight into their characteristic composition.

https://github.com/Simael/zs-drive_and_act
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Clips 800 6,766 13,320 10,333
Classes 16 51 101 34

Attributes 3 7 3 3

Domain Sports YouTube YouTube Vehicle cabin

Table 1: The novel ZS-Drive&Act benchmark next to
previously used zero-shot action recognition datasets.
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Table 2: Feature generating Wasserstein GANs re-frame ZSL into supervised
recognition, by synthesizing a dataset (gray area) using semantic embeddings [16].

First, we decompose the action-units into their basic
parts, spanning 6 motion patterns, 17 objects and 14 loca-
tions. In order to obtain attributes, we then count the frames
in Drive&Act where both the activity ai and a motion-,
object- or location pattern attj are simultaneously present.
If the counts are above a threshold θ, the binary attribute is
present for the current activity:

f ij = 1(c(ai, attj) > θ) (1)

with f i denoting the attribute vector for activity ai while
the subscript indexes the attributes. Here, c(ai, attj) is the
number of frames in the dataset, where both ai and attj
are annotated. Deriving the attribute vectors for Drive&Act
in this fashion, 37 dimensional attribute vectors for the
34 fine-grained activities make up the semantic space,
which we name Driver Activities with Attributes (DAwA).

3. Zero-shot driver action recognition
3.1. Zero-shot models

ConSE [22] ConSE leverages word embedding representa-
tions of the class labels and a visual model optimized for
classification of the seen classes. During inference, a new
representation is formed by convex combination of word
embeddings of the seen classes weighted by their posterior
probability. Then, the unseen activity with label closest to
the previously computed vector becomes our prediction.

DAP [13] DAP leverages the presence or absence of
relevant attributes within the given video. The set of
attributes present in the visual input are estimated by a
trained attribute recognition network. During inference,
the output of the model is the best fit between the predicted
attributes and the attribute vectors of the unseen classes.

DeViSE [6] The word embedding-based method DeViSE is
trained to directly regress semantic vectors corresponding

to the seen classes. After training on seen classes, for an in-
put from unseen classes, a word vector is regressed and the
nearest neighbor in terms of cosine-similarity is predicted.

f-WGAN [5, 16, 35] f-WGAN reframes the zero-shot ac-
tion recognition problem to a supervised learning task on
synthesized feature vectors (Figure 2). To this end, a con-
ditional Wasserstein GAN [1] is trained with error-signals
provided by a discriminator tasked with exposing forged
feature vectors. A decoder on top of the synthesized fea-
ture vectors reconstructs the semantic embeddings to en-
sure that class-relevant information is retained. A synthetic
dataset is set up by providing semantic embeddings of un-
seen classes to the generator along with noise for diverse
synthetic feature vectors. Consequently, a classifier for the
unseen classes is trained on this labeled generated dataset.

3.2. f-WGAN improvements

Fine-tuning We explore the effect of fine-tuning the feature
extractor in f-WGANs on seen classes of the target dataset.
As such, we exchange the conventional feature extractor
with its fine-tuned version using visual data of seen classes.

Early Semantic Fusion The f-WGAN framework condi-
tions its generator and discriminator on the semantic em-
bedding ϕ(·). We introduce an early semantic fusion strat-
egy that leverages multiple semantic spaces simultaneously.
Therefore, we construct a fused semantic embeddingϕ∗(y):

ϕ∗(y) = ϕ1(y)⊕ . . . ⊕ ϕn(y) (2)

where ϕi(y) represents the ith semantic embedding of
class y and ⊕ denotes the concatenation operator.

Late Semantic Fusion Our second approach to fuse mul-
tiple semantic spaces trains n f-WGANs, each exploiting
different semantic embeddings ϕi(·), and n corresponding
classifiers ci. The zero-shot classification result is esti-
mated by the average over all predictions of the n classifiers.



W2V DAwA #Params 3 Second Chunks Segments
validation testing validation testing

Random Baseline – 10.00 10.00 10.00 10.00

CONSE 3 12.3M 38.49± 10.23 28.79± 6.08 40.65± 10.72 30.01± 6.45

DeViSE 3 12.6M 37.87± 10.59 27.69± 8.66 40.65± 11.05 28.01± 8.37

DAP 3 12.3M 37.58± 7.08 28.66± 7.15 39.44± 6.64 27.61± 7.76

f-WGAN 3 51.8M 36.64± 7.17 25.18± 4.17 41.72± 9.07 24.29± 6.66

f-WGAN + fine-tuning 3 51.8M 37.63± 8.94 27.01± 5.27 45.28± 10.03 28.93± 7.61

f-WGAN 3 47.6M 32.49± 7.45 25.04± 6.77 38.31± 8.29 26.68± 6.82

f-WGAN + fine-tuning 3 47.6M 36.37± 8.43 26.28± 8.46 40.96± 8.08 29.96± 6.82

Early Semantic Fusion 3 3 52.5M 40.28± 10.39 29.22± 8.01 46.37± 10.21 32.80± 5.80
Late Semantic Fusion 3 3 99.4M 37.94± 9.77 28.45± 6.26 44.78± 9.13 32.55± 7.05

Table 3: Zero-shot driver behavior recognition results on the ZS-Drive&Act benchmark, using the 14-10-10 cross-validation split and
either 3 second chunks or full activity segments. Average top-1 accuracy is reported± the standard deviation over 10 random experiments.

Therefore, late fusion comprises an ensemble of n classi-
fiers which are rooted in n distinct semantic embeddings.

4. Evaluation

Implementation details We train ConSE, DAP and De-
ViSE in an end-to-end fashion in combination with an In-
flated 3D network (I3D) [3]. While ConSE comprises a
standard I3D classifier with 14 output neurons and lever-
ages Word2Vec as semantic space, DAP uses an I3D back-
bone with 37 neurons augmented with sigmoid activation.
The sigmoid normalization of the final output layer pro-
duces values between 0 and 1, indicating the presence of
the DAwA attributes. For DeViSE, we alter the final I3D-
layer to have the same dimensionality as the semantic em-
bedding (i.e., in our case 300 neurons). In case of f-WGAN,
we extract multiple visual features from the last I3D pool-
ing layer averaged over the temporal dimension (the feature
vector’s size is 1024). For the generator, discriminator and
decoder, we employ fully connected layers and showcase
f-WGANs on both Word2Vec and DAwA semantic spaces.
All I3D networks are initialized with pre-trained weights
as described in Section 2.2. The I3D backbones of ConSE,
DAP and DeViSE are fine-tuned on the seen Driver&Act
classes. While we also evaluate a version of f-WGAN,
where the encoder is fine-tuned on Drive&Act, the weights
of encoder remain fixed during the generator and discrimi-
nator training. For semantic fusion approaches we fuse our
proposed DAwA attributes and Word2Vec embeddings. We
consider two evaluation settings: using the complete activ-
ity segments as our samples or decomposing them into three
second chunks to give more weight to longer activities.

Results First, based on the results of the zero-shot models
in Table 3, both DAwA and Word2Vec are suitable semantic
spaces for describing the 34 activities in Drive&Act. Inter-
estingly, the state-of-the-art f-WGAN model for zero-shot
action recognition falls short in comparison to the conven-
tional ZSL models. However, when fine-tuning the feature
extractor, its performance increases up to competitive re-
sults. When incorporating DAwA and Word2Vec by means
of our late fusion strategy, an increase of 2.54% over base-
line models is achieved on the activity segments. Our f-
WGAN enhancement with early fusion of the attribute- and
word vector representation is able to boost the recognition
by 4.04% (3 second chunks) and 6.12% (segments) respec-
tively. This hints at a complementary nature of the semantic
spaces as they are derived from (1) compositions of activi-
ties and (2) large text corpora. Overall, using f-WGAN to-
gether with our proposed fusion of the attribute- and word
vector representation leads to the best recognition results.

5. Conclusion
Adaptive vision-based recognition infrastructure in ve-

hicles lies vital groundwork for downstream safety related
tasks such as driver monitoring. Prevalent problems when
integrating deep learning into such real-world applications,
are (1) annotating a large quantity of samples and (2) cop-
ing with changing environments. We address these chal-
lenges by placing the zero-shot driver behavior recognition
task into the application-driven setup of Drive&Act. With
our established protocol, novel video-based attributes and
implementations, we showcase the relevance of this new
benchmark, as the state-of-the-art zero-shot action recog-
nition models experience major challenges. Nonetheless,



our proposed semantic fusion strategies increase the perfor-
mance of the f-WGAN by 6.12%, yielding an overall per-
formance of 32.80% on the Drive&Act test set.
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