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Abstract— We encounter a wide range of obstacles when
integrating computer vision algorithms into applications inside
the vehicle cabin, e.g. variations in illumination, sensor-type and
-placement. Thus, designing domain-invariant representations
is crucial for employing such models in practice. Still, the vast
majority of driver activity recognition algorithms are developed
under the assumption of a static domain, i.e. an identical distri-
bution of training- and test data. In this work, we aim to bring
driver monitoring to a setting, where domain shifts can occur
at any time and explore generative models which learn a shared
representation space of the source and target domain. First, we
formulate the problem of unsupervised domain adaptation for
driver activity recognition, where a model trained on labeled
examples from the source domain (i.e. color images) is intended
to adjust to a different target domain (i.e. infrared images)
where only unlabeled data is available during training. To
address this problem, we leverage current progress in image-
to-image translation and adopt multiple strategies for learning
a joint latent space of the source and target distribution and
a mapping function to the domain of interest. As our long-
term goal is a robust cross-domain classification, we enhance
a Variational Auto-Encoder (VAE) for image translation with
a classification-driven optimization strategy. Our model for
classification-driven domain transfer leads to the best cross-
domain recognition results and outperforms a conventional clas-
sification approach in color-to-infrared recognition by 13.75%.

I. INTRODUCTION AND RELATED WORK

Driver behavior analysis opens doors to a more natural,
convenient and safe human-vehicle interaction [1], [2]. Es-
pecially in automated driving systems, increased freedom
leads to driver engagement in more complex and distractive
activities [3]. Recognizing what humans are doing inside the
vehicle cabin encourages new technologies that enhance the
comfort e.g. by adjusting the light when the human is reading
or lowering the music volume when making a phone call. As
today no driving system has achieved full automation (SAE
level 5, as in [4]), an even more vital safety application arises
in the transition period of conditional or high automation
(SAE levels 3 and 4), where drivers are still required to be
alert and provide inputs in uncertain situations. When the
driver is in the midst of a secondary activity, the vehicle
can detect the distraction and preemptively signal the human
regarding upcoming passages e.g. requiring to take over.

While the rise of deep learning has led to significant
progress of driver action recognition in a static scenario,
such models are notably bad in handling changes in sensor
type or -placement [5]. In this work, we aim to develop
models which are able to classify data from domains different
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Fig. 1: In order to circumvent the expensive annotation
process for a new sensor type, we explore the knowledge
transfer from an existing sensor into the recognition pipeline.

from the ones seen during training and study driver activity
recognition in the cross-modal setting. Our final goal is
cross-modal knowledge transfer: given an existing model
trained on annotated data from the source domain, we aim
to adjust it to classify data examples from a different target
domain where new annotations would be too costly to
acquire (overview in Figure 1). To enable such a knowledge
transfer, we leverage current progress in image-to-image
translation and learn a joint latent space of both domains
in an unsupervised manner.

Activity Recognition A widespread way to capture driver
behavior is by observing the person through cameras inside
the vehicle cabin [5], [1], [6], [7], [2]. Fueled by the
recent advancements in computer vision, the field of activity
recognition [8], [9] experienced tremendous improvements,
but also inherited its challenges, e.g. sensitivity to domain
shifts [5]. There are different strategies to deal with these
problems, for example, varying illumination can be addressed
by using different camera types, such as near-infrared or
depth sensors [10]. While combining multiple cameras con-
sistently leads to improvement in recognition results [10],
[11], [5], introducing a novel sensor into the setup often
requires costly data collection, annotation and model re-
training for the new modality type. Could we skip the
costly annotation of the new data and instead transfer the
already existing knowledge to our domain? Such a domain
adaptation for cross-modal driver behavior recognition, as
described in Figure 1, is the key goal of this paper.

Image-to-Image Translation and Domain Adaptation
This work is influenced by the image-to-image translation
task (i.e. mapping an image from a source domain to a



different target space [12]), which experienced steep progress
since the emergence of Generative Adversarial Networks
(GANs) [13]. To this end, Zhu et al. introduced the concept
of cycle-consistency [12], that entails the transfer back to
the original representation employing a second GAN. At the
same time, Liu et al. explored the idea of a shared-latent
space, that aims to learn a joint representation of both distinct
domains [14]. Image-to-image translation methods have been
successfully applied for unsupervised domain adaptation in
fields such as digit recognition, semantic segmentation and
person re-identification [15], [16], [17], [18], [19].

We adopt and extend these image-to-image translation
paradigms to handle domain changes inside the vehicle
cabin, which, to our best knowledge, is explored for the first
time in context of driver observation. We further present a
novel CLaSsification-driven model for UNsupervised Image
Translation CLS-UNIT. Our model is based on a Variational
Auto-Encoder (VAE) for domain adaptation [14], which we
enhance with an additional classification-driven loss influ-
enced by a similar strategy employed successfully in previous
semantic segmentation works [16]. To evaluate our idea, we
explore two settings, in which the test data is captured by a
sensor different to the one used during supervised training:
classification of (1) near-infrared and (2) depth videos with
annotated examples only available for color data. Our CLS-
UNIT model consistently outperforms the baselines and other
image-to-image translation approaches.

II. DEEP CLASSIFICATION-DRIVEN CROSS-MODAL
TRANSLATION FOR DRIVER OBSERVATION

We address the problem of cross-modal driver activ-
ity recognition, which aims at inferring the correct driver
behavior from a different modality type than the one
seen during training. Next, we define the task of unsu-
pervised domain adaptation for driver behavior recognition
(Section II-A) and describe our proposed strategy for lever-
aging generative image-to-image translation models on our
task (Section II-B). Finally, we describe the modules of our
proposed classification-driven architecture (Section II-C).

A. Cross-Modal Driver Activity Recognition

Conventional action recognition research aims at assigning
an activity label y ∈ Y to new input data x ∈ X [8].
Thereby, both training and evaluation samples are generated
by the same underlying probability distribution x ∼ pdata. In
cross-modal action recognition, on the other hand, test and
training data are sampled from distinct probability distribu-
tions. Formally, our training set comprises labeled instances
from the source domain: (xs, ys), with xs ∈ Xs and ys ∈ Y ,
and unlabeled data from the target domain xt ∈ Xt. Our
goal is to classify each instance xtestt in the target domain
Xt from the test set.

In this work, we aim to develop models for cross-modal
driver activity recognition. We explore two mapping func-
tions: learning to transfer (1) from source to target ms→t :
Xs → Xt and (2) from target to source mt→s : Xt → Xs.
After we learn these mapping-functions (see Section II-B

and Section II-C) the prediction from the new domain for
an instance xtestt is computed as follows:
(1) The function ms→t can be directly used on the labeled

training data. That is, we translate the labeled source
examples xs into the target domain, which we use for
training a classifier ct : Xt → Y on (ms→t(xs), ys).

(2) Another strategy is to exploit mt→s to convert an
instance xtestt from the target domain of our test set
into the source domain. More precisely, a classifier
cs : Xs → Y trained on (xs, ys) is subsequently used
to yield the class-prediction for mt→s(x

test
t ).

B. Neural Video Translation

In this section, we examine how to learn the mapping-
functions for video frame transfer from the source domain
(e.g. RGB) to the target domain (e.g. NIR) and vice versa.
As we deal with an unsupervised setting, i.e. there are no
labels for target domain, we also lack access to pairwise
registered videos between the two modalities. We therefore
leverage the concept of cycle-consistency, which allows us to
learn the mapping without the available ground-truth pairs.
Generative Adversarial Networks (GANs) We model the
mapping functions ms→t and mt→s with generator networks,
which use convolution layers to translate the frames. Using
a generator alone is a viable solution but has two drawbacks:
(1) it is prone to learn a transfer to a single instance point
(e.g. mapping to sepia in case of image colorization), and
(2) it requires paired ground-truth data, which is impracti-
cal in many applications. To address this, we employ two
discriminator networks (for each of our mapping functions)
and design two GAN models [13]. The discriminators DXs

and DXt are neural networks that learn to decide if the
samples stem from the probability distribution of the source
or target domain respectively or if they were produced by the
generators. The architecture for source-to-target mapping of
the images is trained by minimizing the LGAN loss [12]:

Ls→t
GAN = Ext∼pdata,t

[logDXt
(xt)]

+Exs∼pdata,s
[log(1−DXt

(ms→t(xs)))].
(1)

The loss comprises: (1) a target-based loss, which penalizes
the discriminator for not classifying data sampled from the
target domain correctly; and (2) a loss that includes both
the generator and the discriminator, in such a way that
they oppose each other during training. While the gener-
ator produces data intending to fool the discriminator, the
discriminator learns to distinguish between the synthesized
and real instances. For the inverse direction (i.e. from target
to source), the loss is computed by interchanging our two
domains in Equation 1.
Cycle-consistency paradigm When using the loss from
Equation 1 as-is, we do not enforce the generator to use
the input map for fooling the discriminator. Thus, the model
can fool the discriminator by producing previously unseen
noise. To enforce the generator to keep relevant information
in the translation process, we employ the cycle-consistency
paradigm [12] and include the cyc-loss in our minimization:



Ls→t
cyc = Exs∼pdata,s

[‖mt→s(ms→t(xs))− xs‖1] (2)

where ‖·‖1 denotes the L1 distance. This term encourages
the network to retain information from the input image by
encouraging the mapping to reproduce the original sample.
Semantic consistency loss We augment the cycle-
consistency loss with additional semantic information ex-
tracted from our labeled source data, similarly to [16]. To
this intent, we design a classifier c : Xs∪Xt → Y for fusing
the class-information into the training procedure:

Lsem = E(xs,ys)∼pdata,s
[CE(c(ms→t(xs)), ys)]

+Ext∼pdata,t
[CE(c(mt→s(xt)), ŷt(xt)])],

(3)

where ŷt(xt) = argmax(c(xt)) infers a label of a target
instance using our classifier c. The cross-entropy loss denoted
with CE(·, ·) is calculated with respect to the classification
result of c on the instance mapped into the other domain.
Classification-driven loss Overall, the building blocks of the
final loss, as employed in [16], cover the adversarial loss
for realistic image reconstruction and a cycle-consistency
loss to compensate for the lack of paired data. Moreover,
a semantic consistency loss takes advantage of the labeled
source training data and enforces similar classification scores
of images before and after the translation. The final loss
therefore not only aims to realistically map between the
domains, but is also classification-driven as it computes the
loss by summing the previously defined terms:

LCLS = Ls→t
GAN + Lt→s

GAN + Ls→t
cyc + Lt→s

cyc + Lsem. (4)

Shared-latent space models Instead of estimating the map-
ping functions directly, shared-latent space models [14] take
a detour through an intermediate representation shared by
both the source- and target domain. That is, the direct map-
ping function ms→t is divided into a convolutional encoder
ms→` and a decoder network m`→t. This encoder-decoder
setup condenses the input to a compact latent representation
and is often implemented using Variational Auto-Encoders
(VAEs) [14]. Thus, two VAEs underlie ms→`, m`→s and
mt→`, m`→t respectively. To encourage the encoder net-
works ms→` and mt→` to have a common representation
space, the parameters are shared throughout the later layers.
An additional regularization constraint that is frequently
applied to VAEs, restricts the output of the encoder to
follow a standard normal distribution, i.e. z ∼ pst(·),
where pst(z) = N (z; 0, I). The outcomes are penalized
when deviating from standard normal distribution via the
KL-divergence between pst(·) and the latent parameters
(averages and deviations). The final latent representation of
an image therefore encompasses sampling from this esti-
mated distribution. The encoder models the distributions by
estimating mean vectors of unit Gaussians N (zs; ms→`, I)
and N (zt; mt→`, I), of which the outputs are used in the
decoders. Finally, we encourage the latent representation to

follow a standard distribution and the reconstructed image to
resemble the input data as follows:

Ls,`
V AE = λ1KL(N (zs; ms→`(xs), I) || pst(z)) −

λ2Ezs∼N (·; ms→`(xs),I)[log pm`→s
(xs; zs)]

(5)

where KL(·||·) computes the Kullback-Leibler diver-
gence between two probability distributions. We model
pm`→s

(xs; zs) as a Laplacian distribution which when
minimizing its log-likelihood is equivalent to minimizing
the absolute distance between the original image and its
reconstruction using m`→s. A matching loss Lt,`

V AE sets up
the second VAE of the framework.

In addition to this, two GANs are employed to ensure
that the decoder networks produce samples that fit into their
assigned domains. This is established by augmenting our
framework with additional discriminator networks for each
domain, leading to a loss similar to (1).

To ensure that the mapping of an image to the other
domain and back into the original domain results in the input
image, a variant of the cycle-consistency paradigm is added
as follows:

Ls→t→s
vaecyc = λ3KL(N (zs; ms→`(xs), I)||pst(z))
+λ3KL(N (zt; mt→`(ms→t(xs)), I)||pst(z))

−λ4Ezt∼N (·; mt→`(ms→t(xs)),I)[log pm`→s
(xs; zt)],

(6)

with a cross-domain mapping of ms→t(xs) =
Ezs∼N (·; ms→`(xs),I)[m`→t(zs)]. The hyperparameters
λ{1−4} provide measures to weight the different components
of the losses LV AE , LGAN and Lvaecyc that are all
optimized in both directions composing the loss for [14].
This shared-latent space framework is referred to as UNIT.

C. Classification-driven domain transfer learning with VAEs

While UNIT provides a meaningful mapping from the
source to the target domain, it has issues with preserving
the class information. In contrast, CyCADA [16] is able
to preserve the semantic information during the mapping
procedure, but encounters difficulties bridging between the
source- and target domain. We aim to capture the advantages
of both techniques and introduce a novel CLaSsification-
driven model for UNsupervised Image Translation CLS-
UNIT (overview in Figure 2). Our model enhances the VAE-
based UNIT network for learning a shared-latent space
with a classification-driven loss, which has previously been
successfully used in semantic segmentation models [16]. Our
CLS-UNIT loss is defined as:

LCLS−UNIT = λclsLsem + λunit(L
s→t
GAN + Lt→s

GAN

+ Ls,`
V AE + Lt,`

V AE

+ Ls→t→s
vaecyc + Lt→s→t

vaecyc )

(7)

where λunit and λcls are parameters for weighting the losses,
which we set empirically using the validation data to 0.6 and
0.4 respectively. In the NIR-to-color testbed, larger λunit
causes the translation to be more colorful while resulting in
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Fig. 2: Overview of our CLS-UNIT architecture (left) and other evaluated image-to-image translation models (CycleGAN
and CyCADA) on the right. The main difference between CyCADA and CycleGAN is the semantic consistency loss. Our
CLS-UNIT model extends the conventional UNIT model with the classification-driven loss in a similar way. The training
procedure for learning a mapping function from the target to source domain is depicted for all models.

a blurry image. Choosing a higher value for λcls leads to the
preservation of structure in the mapped images lowering the
emphasis on faithful colorization.

III. EXPERIMENTS

A. Implementation Details and Evaluation Setup

Dataset As no established evaluation procedure is available
for driver monitoring in the cross-modal setting, we adapt the
Drive&Act dataset [5] for standard driver activity recognition
for our task. The dataset comprises color, NIR- and depth-
videos of 15 drivers, which are densely annotated with
34 fine-grained activity labels. As previously described, our
training data consists of: (1) labeled data in the source
domain and (2) unlabeled recordings in the target domain.
We select color videos as our source modality and both, NIR
and depth as our target domains, resulting in two distinct
experimental setups. For our training data, we therefore ran-
domly select color data of 7 drivers with the corresponding
activity annotations and unlabeled videos of 3 drivers in the
target (i.e. NIR or depth) domain. To evaluate our model, we
then use NIR and depth footage of the remaining 5 drivers for
validation (2 subjects) and testing (3 subjects). As in [5], we
divide the recordings in 3s chunks, compute the prediction
for each chunk and then use balanced accuracy (i.e. average
accuracy of each individual class) as our performance metric.

Video embedding scheme We embed the input videos using
the I3D network pre-trained on Kinetics [8]. Depending on
the mapping strategy (see Section II-A), we either fine-tune
the model on the labeled source data (i.e. color videos) or on
the frames translated in our target domain (i.e. NIR or depth).

The network operates on 16 frame clips of a size of 224×224
and is trained using SGD for 200 epochs. We sample 16
frames from the chunks to fit the I3D- and mapping network
into memory at a reasonable minibatch size of 8. The training
hyperparameters are adopted from [5], i.e. we use a learning
rate of 0.05 decreased by 0.2 after 50, 100 and 150 epochs,
a weight decay of 1e− 7 and a dropout probability of 0.5.

Semantic signal For determining the semantic consistency
loss of our mapping network, we use an auxiliary ResNet
pretrained on ImageNet [20]. The backpropagated signal
flows through the parameters of the mapping network, en-
couraging it to preserve information about the action seman-
tics. As the auxiliary classifier has not learned useful seman-
tic information early in training, we only backpropagate the
signal if its loss falls below a threshold θ (i.e. θ = 3.4, just
below log(#classes), the loss of uniform classification).

Frame sampling scheme As the input to our mapping
network is an image, we need a strategy for sampling from
the video while training. Selecting the frame from Drive&Act
uniformly is problematic, because the class distribution is
highly unbalanced [5]. To tackle this, we perform class-wise
sampling for the source domain data which draws frames
of each class with the same probability. In case of the target
domain data (i.e. NIR or depth), we draw instances uniformly
over all frames as we do not have associated class labels.

Generator and Discriminator Architectures for the map-
ping networks in CycleGAN- and UNIT-based methods are
adapted from [12] and [14]. They were trained for 20 epochs
with 10K sampled images of size 256× 256 per epoch. We
use the initial learning rate of 0.0001 for the first 10 epochs,
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Fig. 3: Example translations of different models from NIR- to color images; the proposed method with a weighting scheme
achieves meaningful colorization while preserving the structure and shapes in the input image.

Fig. 4: Image-to-image translation, left-to-right: source color
image, ground truth depth image (for reference) and color-
to-depth translation, using our CLS-UNIT model.

and linearly decay it afterwards. The weights are initialized
using He-initialization [21]. The mapping network and the
classification stream with the semantic consistency loss are
optimized using Adam [22] with a weight decay of 0.0001.

B. Qualitative and Cross-Modal Recognition Results

Image-to-Image Translation Results While our main goal
is to recognize human activities, we also showcase translation
examples of the learned mapping functions. In Figure 3, we
compare the NIR-to-color translation of previously described
models. Most of the networks ignore fine structures, such as
the hands of a person, in their translations, with the exception
of our CLS-UNIT model, where such classification-relevant
cues are preserved. The NIR-to-color mapping schemes in
CycleGAN and UNIT that do not employ a classification
signal, generate colorful images, however, at the expense of
blurring the driver. The balance between retaining details
relevant to classification (e.g. person- and object-related
cues) and meaningful colorization is done best by our CLS-
UNIT approach with an auxiliary ResNet-18 classifier. An
example of the color-to-depth translation and the correspond-
ing ground-truth depth map are visualized in Figure 4.

Cross-Modal Recognition Results We demonstrate the ef-
fectiveness of our model in Table I. Additionally to promi-
nent image-to-image translation approaches [12], [16], [14],
we compare our model to three baselines: (1) a random
classifier, (2) the I3D network trained on the source data
(i.e. color) classifying the data in target domain directly and
(3) an I3D trained on source data transformed to grayscale

Translation Model Direction Classifier Val Test
Baseline Methods

– – Random 3.03 2.94
– – Color-I3D 10.97 15.57
– – Grayscale-I3D 17.91 17.22

CycleGAN-based Networks
CycleGAN NIR→Color Color-I3D 16.52 15.06
CyCADA + RN-101 NIR→Color Color-I3D 14.91 12.01
CyCADA + RN-18 NIR→Color Color-I3D 16.94 22.33
CyCADA + RN-18 Color→NIR NIR-I3D 29.14 24.58

Shared-Latent Space Models
UNIT NIR→Color Color-I3D 4.11 4.03

CLS-UNIT + NIR→Color Color-I3D 14.06 18.35RN-101 (ours)

CLS-UNIT + NIR→Color Color-I3D 12.20 16.46RN-18 (ours)

CLS-UNIT + NIR→Color Color-I3D 24.88 23.06RN-18 + λ (ours)

CLS-UNIT + Color→NIR NIR-I3D 31.52 29.32RN-18 + λ (ours)

TABLE I: Cross-modal activity recognition results with
knowledge transfer from color to NIR. The translation
model and the direction can be derived from the recognition
procedure employed (details can be found in Section II-A).
RN denotes the ResNet architecture and λ indicates models
where λcls and λunit were tuned.

directly classifying the target domain data. The third baseline
(grayscale) yields a fair color-to-NIR evaluation, as NIR data
might seem similar to grayscale images with the naked eye.

The I3D model performs an accuracy of 67.76% in the
conventional (i.e. color-to-color) setting, which may be seen
as the upper bound for our cross-modal approach. I3D
performance drops to only 15.57%, when applied in our
cross-modal setting without any additional transfer, as CNNs
per se are highly susceptible to domain shifts. Converting the
training images to grayscale clearly helps, as they appear
similar to the target IR frames (17.22%), but the recognition
rate still remains low. When using CycleGAN-based methods
and the mapping direction NIR-to-color, only the CyCADA
model with an auxiliary ResNet-18 classifier outperforms the
grayscale I3D baseline. The conventional UNIT framework



Translation Model Classifier Val Test
Baseline Methods

– Random 3.03 2.94
– Color-I3D 8.21 8.42
– Grayscale-I3D 10.21 9.50

Shared-Latent Space Model
CLS-UNIT + ResNet-18 (ours) Depth-I3D 17.23 17.57

TABLE II: Cross-modal activity recognition results of our
color-to-depth mapping, where we show that the transfer
scheme increases performance significantly.

could not carry the relevant information for classification
through the mapping functions at all and obtains an accuracy
slightly better than random. However, our proposed extension
of UNIT with a classification-driven loss (CLS-UNIT) heav-
ily increases the performance, leading to the best recognition
results when using weights λcls and λunit. As described
in Section II-A we are flexible in choosing the mapping
direction for classifying the unfamiliar modality. Utilizing
a mapping from color-to-NIR we translate the labeled color
videos and train a NIR classifier on top of them for our
best CycleGAN-based and shared-latent space models. In
addition to consistently producing better results (see color-to-
NIR models in Table I) this scheme eliminates the necessity
to compute the translation of incoming data in an online
scenario as the classifier directly operates on the target do-
main. Overall, our model with the recognition rate of 31.52%
on validation set and 29.32% on test set surpasses other
translation models and baselines by a significant margin.

Our second experiment in the color-to-depth setting
(Table II) shows consistent recognition results with a clear
advantage of our approach. Using a color-to-depth transfer
function with our CLS-UNIT model and then learning to clas-
sify the translated frames boosts the native I3D performance
by 9.15% (test) and 9.02% (validation).

IV. CONCLUSION

When employing computer vision models in the uncon-
trolled driving environment, one quickly faces the problem
of domain shifts. This paper addresses the task of cross-
domain driver monitoring and has two-fold contributions.
First, we formalize the problem of unsupervised cross-
domain driver activity recognition and extend the popular
Drive&Act testbed with our setting. To provide a challeng-
ing benchmark, we implement multiple off-the-shelf image
translation models and conduct an extensive analysis of their
cross-domain classification performance. Second, we intro-
duce a novel approach for cross-modal activity recognition
in context of driver observation. We leverage activity labels
of the source domain training data and learn a shared-latent
space of both modalities with a VAE-based model extended
with an additional classification-driven loss. Enhancing the
UNIT-VAE model training with the classification-driven loss
encourages the network to learn a shared representation
which reflects the semantic nature of the activity classes and
which consistently leads to the best recognition results.
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