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Abstract— While deep Convolutional Neural Networks
(CNNs) have become front-runners in the field of driver
observation, they are often perceived as black boxes due to
their end-to-end nature. Interpretability of such models is vital
for building trust and is a serious concern for the integration
of CNNs in real-life systems. In this paper, we implement a
diagnostic framework for analyzing such models internally and
shed light on the learned spatiotemporal representations in a
comprehensive study. We examine prominent driver monitoring
models from three points of view: (1) visually explaining the
prediction by combining the gradient with respect to the
intermediate features and the corresponding activation maps,
(2) looking at what the network has learned by clustering
the internal representations and discovering, how individual
classes relate at the feature-level, and (3) conducting a detailed
failure analysis with multiple metrics and evaluation settings
(e.g. common versus rare behaviors). Among our findings,
we show that most of the mistakes can be traced back to
learning an object- or a specific movement bias, strong semantic
similarity between classes (e.g. preparing food and eating) and
underrepresentation in the training set. Besides, we demonstrate
the advantages of the Inflated 3D Net compared to other CNNs
as it results in more discriminative embedding clusters and in
the highest recognition rates based on all metrics.

I. INTRODUCTION AND RELATED WORK

The lack of transparency and the inability to efficiently
visualize internal decision processes resulted in Convolu-
tional Neural Networks (CNNs) being labeled as black boxes,
considerably slowing down their integration in industrial sys-
tems. In contrast to conventional feature-based methods [1],
[2], [3], intermediate representations of such end-to-end ar-
chitectures, are not defined by hand but learned together with
the classifier. While 3D CNNs have demonstrated impressive
results in driver activity understanding [4], [5], [6], the anal-
ysis of what such models have learned is considerably harder
due to their end-to-end nature. As failures of such networks
might lead to catastrophic results in real-life applications,
studying how such architectures function internally becomes
increasingly important for overcoming biases [7], identifying
most relevant data [8] and explaining failure cases [9].

In this work, we make the first step towards transparency
behind spatiotemporal CNNs for driver monitoring, and
implement multiple methods to systematically examine the
learned representations. With our diagnostic framework, we
are able to gain insight into (1) where did the network
look (Figure 1), i.e. which video regions have guided the

Fig. 1: Gaining insight into spatiotemporal CNNs for driver
action recognition. We leverage the gradient for the predicted
class with respect to the intermediate feature maps of the con-
volutional layer to obtain video regions which have driven the
neural network decision and understand misclassifications.

current decision in cases of both, success and failure (2) what
did the network learn i.e. exploring the intermediate layer
representations with unsupervised learning and detecting
relationships between different behaviors, and (3) a detailed
performance analysis focused on common misclassifications
of the individual classes and the relation to data scarcity.

Why automatic driver behavior understanding? Under-
standing the human behind the steering wheel makes human-
vehicle cooperation more intuitive and safe. Rising levels
of automation increase human freedom, leading to drivers
being engaged in distractive behaviors more often. We
recognize four major use-cases for applications of driver
activity recognition models in practice. (1) As the current
activity directly affects the cognitive workload [10], driver
monitoring makes automated vehicles safer by assessing the
level of alertness. Therefore, the key application of such
algorithms at SAE levels 0 to 3 [11] is the assessment
of human distraction levels and reacting accordingly, for
example, with a warning signal. (2) With the automation
rising to SAE levels 4 and 5, increasing driver comfort
becomes the most important use-case. For example, move-
ment dynamics might automatically adjust depending on the
detected activity (e.g. softer driving if the person is drinking
tea or sleeping). (3) Activity recognition task is also highly
related to the problem of gesture recognition [12], which
can be used as a novel intuitive communication interface
inside the vehicle. (4) A further safety-related application



of activity recognition during manual driving is intention
prediction. As the majority of traffic fatalities is caused by
human errors, a system capable of foreseeing such maneuvers
might intervene, before it is too late.

Conventional driver activity recognition Feature-based
methods, which have dominated the field for decades,
follow the classical machine learning pipeline comprising
two phases. First, a feature vector representing the input
data is estimated. The way the data is processed in this
step is manually defined by human experts and is often
based on the body pose [1], [3], eye gaze [13], [14],
hand location [15], [1], head pose [14], [2], [15], detected
objects [16] or vehicle dynamics [17], [2]. The resulting
feature is then passed to a machine learning framework
based on e.g. Support Vector Machines [14], Hidden Markov
Models [2] or Recurrent Neural Networks [16], [3], [2].
Given the controlled nature of the first phase (i.e. , human
designed feature calculation and -selection), the decision
pathways of such methods tend to be easier to interpret.

End-to-end driver observation with CNNs In end-to-end
networks, feature extraction and classification merge into
one global model. Deep CNNs operate directly on the input
video and the intermediate representation is not defined but
learned through convolution filters. Such models have been
recently utilized for driver activity recognition [4], [18],
[19], intention prediction [5], posture classification [6] and
gaze zone estimation [20] with great success. As activity
understanding extends image recognition with the temporal
dimension, most approaches leverage 3D convolutions. For
example, in Inflated 3D Net [21], [4], weights of hierar-
chically stacked 3 × 3 × 3 convolution filters are learned
together with the classification layer to obtain discriminative
spatiotemporal representations. In contrast to e.g. skeleton-
based methods, intermediate representations of deep CNNs
are an enigma to the naked eye. Even more so, demystifying
the internal decision processes and analyzing failure cases is
vital for applications and is a growing area in general image
recognition [8], [22]. While recent works aim to quantify the
uncertainty of driver activity classification models [23], [24],
[25], diagnostic tools for tracing back the root causes for the
classification outcome have been overlooked in this field.

Contributions and Summary Given the black box nature
of CNNs, we argue, that shedding light on the learned spa-
tiotemporal representations is crucial for their applications
in real driver monitoring systems, where lack of trust in
such data-driven models remains an obstacle. This work
develops a diagnostic framework for interpreting decisions
of such networks and can be summarized in three major
contributions. (1) First, we aim for visual explanations of the
internal decisions and analyze, where the network attended
when it predicted the specific behavior. To this end, we
set our target as the predicted class and backpropagate the
gradient to the last convolution layer, building on the method
of [8] and extending it to the temporal dimension. We
then weigh the individual feature activation maps at that
particular layer based on the gradient. We examine the re-

sulting heat-maps which indicate the image regions directing
the specific decision (Figure 1) and compare the focus of
the network in cases of success and incorrect predictions.
(2) We then consider the representation point of view and
examine, what the network has learned internally for three
different models previously used for driver monitoring. To
interpret hundreds of neurons of the last network layer, we
reduce the dimensionality using t-SNE [26] and examine the
resulting clusters, which are far more discriminative for the
Inflated 3D Net. We further identify relationships between
the learned representations of individual classes by using
Ward’s hierarchical agglomerative clustering. (3) Finally, we
conduct a comprehensive study of the model performance, by
analyzing e.g. the top-5 generalization and the most common
confusion of the individual classes. Our findings indicate,
that the main failure cases can be traced back to either
semantic similarity combined with underrepresentation in the
training set (e.g. closing versus opening bottle) or a learned
movement-, object- or position bias (e.g. misclassification as
reading magazine if a magazine is somewhere in the scene),
highlighting the need of more diverse object placement in the
datasets. The experiments using our diagnostic framework
show encouraging evidence, that deep CNNs for driver
observation have the potential to become more interpretable.

II. ANALYSIS OF DEEP SPATIOTEMPORAL
REPRESENTATIONS FOR DRIVER MONITORING

A. Evaluated CNNs and Dataset for Driver Observation

Testbed We use Drive&Act [4], the largest available
testbed for driver activity recognition and extend it with
our diagnostic framework. Following the original work [4],
we use the three Drive&Act splits, which have different
people for training (10 people), test (3 people) and validation
(2 people). We focus on the 34 fine-grained activities and the
frontal near-infrared camera view as our evaluation setup.

Neural Architectures We consider three published ap-
proaches based on spatiotemporal CNNs, which were ini-
tially developed for standard video classification and have
recently become front-runners in driver observation [4]:
C3D [27], Inflated 3D ConvNet [21] and Pseudo3D
ResNet [28]. All these architectures directly operate on the
video data and learn the intermediate embeddings together
with the classifier layers in an end-to-end fashion. C3D
and Inflated 3D ConvNet deal with the spatial and tem-
poral dimensions of our input by leveraging hierarchically
stacked 3D-convolution and -pooling kernels with the size
of 3 × 3 × 3 for most layers. P3D ResNet, on the other
hand, mimics 3D convolutions by applying a filter on the
spatial domain (3× 3× 1) followed by one in the temporal
dimension (1×1×3). While we analyze all three models in
Section II-C and Section II-D, we choose the Inflated 3D Net
for the visual explanations in Section II-B, as it has shown
the best recognition results in previous work.



(a) Prediction: placing
object (incorrect 7)

(b) Prediction: sitting
still (correct 3)

(c) Predict.: reading
magazine (incor. 7)

(d) Prediction: plac-
ing object (correct 3)

(e) Prediction: writing
(incorrect 7)

(f) Predict.: reading
magazine (corr. 3)

Fig. 2: Correct vs. Misclassified Predictions: Analysis of video segments using gradient weighted class activation maps,
where samples were close to each other and comprised the same behavior, but resulted in different predictions.

(a) Eating (b) Looking or mov-
ing around

(c) Opening laptop

(d) Placing an object (e) Preparing food (f) Taking off jacket
Fig. 3: Activation maps of the last Inflated 3D ConvNet con-
volution layer weighted by the gradient. Heat-map overlays
illustrate, which region has driven the network’s decision.

B. Where did the network look? Visualizing Internal Deci-
sions with Gradient-weighted Class Activation Mapping

We implement a three-dimensional version of the gradient-
weighted class activation map technique [8] and provide
visual explanations of spatiotemporal CNNs for the first time.
Given an input video, we first conduct a conventional forward
pass and obtain the predicted class c i.e. the class with the
highest activation. Then, we estimate the gradient over yc
(the output before the softmax layer) with respect to each
individual value in the kth feature map Ak of a layer in the
CNN. This is used to obtain the feature importance wk

c for
each individual feature map k by averaging the gradients over
all its n values:

wk
c =

1
n ∑

i, j,t

(
∂yc

∂Ai, j,t
k

)
, (1)

where Ai, j,t
k is the activation at position in space i, j and

time t. In each location (i, j, t) we linearly combine the values
in the feature map by the importance estimate wk

c. The final
weights V i, j,t

c are obtained by passing the computed values
to a ReLU function to remove negative values, as we are
only interested in pixels that increase yc. More formally, we
calculate the final weights as follows:

V i, j,t
c = ReLU

(
∑
k

wk
cAi, j,t

k

)
. (2)

To be able to visualize the resulting explanation as images,
we average the resulting heat-maps over the time dimension.
We provide the resulting visual explanations of the Inflated
3D ConvNet decisions for different classes in Figure 3,
while Figure 2 illustrates key differences between correct
and failed predictions. For example, the network features
characteristic for eating are focused around both, hands
and head (probably due to chewing, Figure 3a), while
preparing food is linked to the hands only (Figure 3e). The
network attention is different depending on the activity, but
in general, we observe increased focus on human hands and
head. There is also a visible object bias, which is useful
in many cases (e.g. a laptop or a newspaper in the scene
increases the chances of an activity involving these objects).
However, such object bias might lead to mistakes, if e.g. the
human is only placing a magazine but reading magazine
is predicted (Figure 2c). Figure 2e reveals, that a specific
hand movement leads to the network predicting writing,
while the person is actually reading. While in most cases
the network seems to make the predictions for the right
reasons, specifically looking at uncertain cases helps us to
draw useful conclusions for improvement. For example, our
analysis highlights the need for diversification of training
data in terms of object placement, so that the network
predicts object-related activities if the human interacts with
them, and not, if they are simply present in the scene.

C. What did the network learn?

We now gain insight into the intermediate features of
the CNNs, to verify whether they provide good generic
representations of driver behavior. We use the first vali-
dation split of Drive&Act and extract the features of the
fully connected layer of the C3D, Pseudo 3D ResNet and
Inflated 3D ConvNet. To make sense of hundreds of neurons,
we first reduce the dimensionality using t-SNE [26]. We
then visualize each video clip in two-dimensional space in
Figure 4, marking behavior classes with different colors.
We qualitatively observe that Inflated 3D Net captures the
nature of activities better, as its features form far more
discriminative clusters. Still, samples of the same activities
also shape visible groups for C3D and Pseudo 3D ResNet,
but the boundaries are far less concise.

We now examine how different behaviors are connected
from the CNN point of view. First, we compute the class



(1) C3D (2) Pseudo 3D ResNet (3) Infalted 3D Net

Fig. 4: Visualizations using t-SNE of the intermediate representations learned by different CNN models. Different behavior
classes are marked with different colors. While all models have clear correlations of the embedding values and the activity,
such “class-specific cluster” are much more discriminative for the Inflated 3D Net.
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Fig. 5: Hierarchical clustering of the learned representations
of the individual classes. We compute the mean vector of
the intermediate Inflated 3D Net embedding for each activity
and then use Ward’s hierarchical agglomerative clustering to
reveal learned relationships between them.

centroid vector by averaging the fully connected I3D features
of each activity. We apply the Ward’s Hierarchical Agglom-
erative Clustering method [29] on the class centroids. The
resulting class hierarchy, illustrated in Figure 5, reveals how
the classes are connected in the model internally. While most
of the semantically related activities are also placed together
in the cluster hierarchy (e.g. opening and closing bottle), such
similar cases often lead to high confusion, as we will show
quantitatively in the next section. We can also understand
how the network operates by looking at these relations,
e.g. the activities writing, talking on phone and putting on
sunglasses all fall into the same red cluster (Figure 5), while
they do not match semantically at first glance. As the network
groups these behaviors, we infer that it has learned them
as fine-grained hand-centric actions and makes its decisions
based on the concise hand movements. This is confirmed
by the visual explanation in Figure 2e, where the model
inaccurately predicts writing by focusing on a very small
area around the hand instead of the object. The model view
of some activities is surprising, for example, taking laptop
from backpack is connected to eating, preparing food and
drinking. The quantitative analysis in our next section will
uncover, that this action is indeed very poorly recognized.

The way, the network interprets this behavior is therefore
simply incorrect. We assume that the model has learned a
certain place bias, as a lot of coarse movements in front of
the torso is typical for these actions. Extending the dataset
with more diverse examples of this action (e.g. taking out
the laptop in other locations) might therefore be beneficial.

D. A Detailed Misclassification Analysis

Previous evaluation of CNN-based models inside the ve-
hicle cabin has focused on the multi-class top-1 accuracy
as a single performance metric [4]. This is an oversimpli-
fication as the prediction quality varies greatly depending
on multiple factors, that we are going to uncover in this
section. To examine the strengths and weaknesses of CNN-
based algorithms, we extend the evaluation procedure of [4]
with multiple settings and metrics. Drive&Act comprises
34 fine-grained activity classes, which, however are highly
unbalanced. As CNNs are notably bad in learning from few
examples, we sort the behaviors by their frequency in the
dataset and divide them into common (top half of the classes)
and rare (the bottom half). We subsequently evaluate the
models in three modes: considering all activities, as it is
usually done, using only the overrepresented- or only the
rare classes. In addition to the conventional top-1 accuracy,
we evaluate the top-5 accuracy, i.e. we consider the sample as
correctly classified if any of the five classes with the highest
probabilities match the ground truth. The top-5 accuracy
might be useful if we want to overlook confusions of highly
similar classes (e.g. fastening and unfastening seatbelt) and
are only interested in coarse recognition. We further extend
the original evaluation protocol with the Precision P, Recall
R and F1 score of the individual classes. Formally, our
metrics (including the balanced multi-class accuracy Acc)
are defined as:

Acc =

n
∑

i=1

Acorr
i

Atotal
i

n
P =

Acorr
i

Apred
i

, R =
Acorr

i

Atotal
i

F1 = 2× P×R
P+R

(3)

where n is the total number of classes, Apred
i the total

number of examples which were assigned the label i, Acorr
i

is the number of correctly predicted instances of class i, and
Atotal

i depicts the total frequency of class i in the test set.
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number of samples in the dataset (for readability only some activities are labeled)

Fig. 6: Misclassification statistics of the Inflated 3D ConvNet on the Drive&Act dataset

In Table I we compare different architectures in terms
of their top-5 and top-1 accuracy for rare, overrepresented
and all activity classes. While the Inflated 3D ConvNet
outperforms other approaches in all metrics (63.64% top-1
test accuracy for all classes), C3D seems to be stronger than
Pseudo 3D ResNet in terms of the top-5 accuracy, while the
latter model is better in top-1 classification. C3D therefore is
well suited for coarse classification but has issues discovering
fine-grained structures. While it is expected, that the top-1
recognition rate is significantly lower than the top-5 results,
this gap grows by a large margin for rare classes (e.g. this
difference is 32.52% for uncommon- and 17.18% for com-
mon actions when considering the Inflated 3D ConvNet test
setting). In general, activity recognition models seem to
perform well for coarse behavior recognition (over 80% top-
5 recognition rate in all settings for Inflated 3D ConvNet),
while there is room for improvement in detecting fine-
grained structures, especially for underrepresented classes
(top-1 Inflated 3D ConvNet accuracy for rare categories
under 50%). Still, identifying half of the actions which only
had few training samples correctly is a good result, as CNNs
are known for being data-hungry and the random baseline is
only 100/34 = 2.94%, as we have 34 actions in total.

We now examine model performance for the individual
classes, with exact precision, recall, F1-score and most com-
mon confusion provided in Table II. We see in Figure 6b,
that while all of the very poorly recognized actions are
underrepresented (frequency in the training set is illustrated
through the circle size), well-recognized behaviors can be
both: common and rare classes. The models are therefore
surprisingly tolerant to learning from few examples in case
of highly discriminative actions. For example, closing door
from outside only has around 20 examples in the complete
dataset (see [4] for the sample frequency statistics). However
it is recognized correctly in 73% of the test cases (Table II),
probably since the human is acting outside of the vehicle,
which is easy to distinguish from the other activities. The
combination of low discriminativeness and underrepresenta-
tion are fatal for a class: e.g. taking laptop from backpack
and preparing food) recognized correctly in only 14% and

TABLE I: Top-1 and top-5 accuracy for fine-grained activity
recognition on the Drive&Act dataset, evaluated separately
for classes over- and underrepresented during training.

Model Common Rare All classes
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Validation
C3D 54.44 87.53 45.70 75.82 50.07 81.67
Pseudo 3D ResNet 58.00 86.61 52.08 74.77 55.04 80.69
Inflated 3D Net 80.62 95.83 58.50 87.88 69.67 91.85

Test
C3D 47.97 83.75 38.86 74.02 43.41 78.89
Pseudo 3D ResNet 52.43 84.05 38.20 65.09 45.32 74.57
Inflated 3D Net 77.88 95.06 49.41 81.93 63.64 88.49

7% of the test set cases. In Figure 6a we summarize the
most common Inflated 3D ConvNet confusions, disclosing
that eight out of ten most frequent mistakes entail an un-
derrepresented ground-truth class. Oftentimes, the confusion
happens when two the behaviors are semantically very close
and one of them is rare. In this case, the model tends to
predict the more frequent class (e.g. preparing food classified
as eating in 41% of cases). Another cause of confusion if
one action being a special case of another: putting laptop
into backpack is a specialization of placing an object and
is classified as such 60% of times. Similarly, taking laptop
from backpack is marked as fetching an object in 36% of
the test set samples. This might be connected to the fact,
that modern architectures downsample the image relatively
fast to obtain large receptive fields and therefore focusing
on classification of coarse structures. Developing models
which fit well for fine-grained recognition would therefore be
beneficial. Some of the common confusions in Table II are
surprising and uncover potential biases. For example, most
common confusion of putting on sunglasses is not taking off
sunglasses, but closing bottle. The model has presumably
learned a bias of concise hand-centric movements, which
are the common pattern of all these actions. Expanding the
training set with more diverse examples might be important
for learning to predict these activities for the right reasons,
such as a combination of typical hand location, -movement
and the correct object being held.



TABLE II: Detailed test set performance of I3D . Mistakes
often occur in semantically close activities or in cases, where
one activity is a specialization of another one (e.g. taking
laptop from backpack as a special type of fetching an object).

True Activity Class Prec. Recall F1 Most Common Confusion
% % % Class %

close bottle 0.57 0.47 0.51 open bottle 0.30
close door inside 0.70 0.82 0.76 entering car 0.06
close door outside 0.73 0.73 0.73 exiting car 0.18
close laptop 0.67 0.37 0.48 open laptop 0.19
drinking 0.93 0.88 0.90 close bottle 0.05
eating 0.76 0.59 0.67 sitting still 0.27
entering car 0.77 0.74 0.75 close door inside 0.11
exiting car 0.83 0.80 0.82 close door outside 0.08
fastening seat belt 0.77 0.82 0.79 placing an object 0.04
fetching an object 0.64 0.67 0.65 placing an object 0.13
interact with phone 0.92 0.86 0.88 eating 0.04
looking or moving 0.14 0.04 0.06 fetching an object 0.38
open backpack 0.14 0.09 0.11 placing an object 0.39
open bottle 0.72 0.68 0.70 close bottle 0.13
open door inside 0.65 0.57 0.60 close door inside 0.09
open door outside 0.89 0.89 0.89 exiting car 0.11
open laptop 0.54 0.51 0.53 working on laptop 0.19
placing an object 0.59 0.72 0.64 fetching an object 0.11
preparing food 0.19 0.07 0.11 eating 0.41
pressing button 0.89 0.98 0.93 using mm display 0.02
put laptop backpack 0.27 0.20 0.23 placing an object 0.60
putting on jacket 0.43 0.62 0.51 taking off jacket 0.15
putting on sunglasses 0.88 0.71 0.79 close bottle 0.05
reading magazine 0.89 0.88 0.88 reading newspaper 0.08
reading newspaper 0.79 0.90 0.84 placing an object 0.05
sitting still 0.87 0.93 0.90 using mm display 0.02
take laptop backpack 0.40 0.14 0.21 fetching an object 0.36
taking off jacket 0.45 0.70 0.55 putting on jacket 0.15
taking off sunglasses 0.75 0.56 0.64 fetching an object 0.16
talking on phone 0.85 0.71 0.77 sitting still 0.19
unfastening seat belt 0.84 0.68 0.75 putting on jacket 0.08
using mm display 0.87 0.98 0.92 sitting still 0.01
working on laptop 0.90 0.76 0.82 fetching an object 0.06
writing 0.86 0.58 0.70 reading newspaper 0.13

III. CONCLUSION

Safety critical systems with human lives at stake have
to be robust in fulfilling their objective. Yet, if a system
failure does arise its root cause has to be understood. With
this notion in mind, we propose measures to overcome
the deficiency in interpretability of CNN-based behavior
recognition in passenger vehicles. With a thorough inspection
of the automatically learned inner representations, we are
able to reason about preferable decision boundaries drawn
by different CNN architectures. With our extension of the
gradient-weighted class activation maps into the temporal
space, the visual inspection of spatiotemporal cues leading
to failed predictions become much more tangible. With our
diagnostic framework in place, narrowing down causes of
failures enable testing pipelines to preemptively identify
shortcomings in (1) the data-distribution (2) learned repre-
sentations and (3) may provide guidance in eradicating bias.
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