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Visual recognition of pointing gestures for human-robot interaction
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Abstract

In this paper, we present an approach for recognizing pointing gestures in the context of human-robot interaction. In order to obtain
input features for gesture recognition, we perform visual tracking of head, hands and head orientation. Given the images provided by a
calibrated stereo camera, color and disparity information are integrated into a multi-hypothesis tracking framework in order to find the
3D-positions of the respective body parts. Based on the hands’ motion, an HMM-based classifier is trained to detect pointing gestures.
We show experimentally that the gesture recognition performance can be improved significantly by using information about head ori-
entation as an additional feature. Our system aims at applications in the field of human-robot interaction, where it is important to do

run-on recognition in real-time, to allow for robot egomotion and not to rely on manual initialization.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the developing field of household robotics, one aspect
is of central importance for all kinds of applications that
collaborate with humans in a human-centered environ-
ment: the ability of the machine for simple, unconstrained
and natural interaction with its users. The basis for appro-
priate robot actions is a comprehensive model of the
respective surrounding and in particular of the humans
involved in interaction. This requires, for example, the rec-
ognition and interpretation of speech, gesture or emotion.

Among the set of gestures intuitively performed by
humans when communicating with each other, pointing
gestures are especially interesting for communication with
robots. They open up the possibility of intuitively indicat-
ing objects and locations, e.g., to make a robot change
the direction of its movement or to simply mark some
object. This is particularly useful in combination with
speech recognition as pointing gestures can be used to spec-
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ify parameters of location in verbal statements (put the cup
there!).

In this paper, we present a real-time system for visual
user modeling (see Fig. 1). Based on images provided by
a stereo camera, we combine the use of color and disparity
information to locate the user’s head and hands. Guided by
a probabilistic body model, we find the trajectories of head
and hands using a multi-hypothesis tracking framework. In
addition, we estimate the orientation of the head, following
an appearance-based neural-network approach. Although
this is a very basic representation of the human body, we
show that it can be used successfully for the recognition
of pointing gestures: we present an HMM-based pointing
gesture recognizer that detects the occurrence of pointing
gestures within natural hand movements and estimates
the pointing direction. We show that incorporating head-
orientation information helps to improve gesture recogni-
tion performance.

The remainder of this paper is organized as follows: In
Section 2, we present our system for tracking a user’s head
and hands. The estimation of head orientation is explained
in Section 3. In Section 4, we describe our approach to rec-
ognize pointing gestures. Finally, in Section 5, we present
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Fig. 1. Overview about the gesture recognition and tracking system
presented in this paper.

experimental results on gesture recognition using all the
features provided by the visual tracker.

1.1. Target scenario

To facilitate natural interaction, robots should be able
to perceive and understand all the modalities used by
humans during face-to-face interaction. Apart from speech,
which is probably the most prominent modality used by
humans, these modalities also include pointing gestures,
facial expressions, head pose, gaze, eye contact and body
language for example.

The target scenario we address is a household situation
in which a human can ask the robot questions related to
the kitchen (such as “What’s in the fridge?”’), ask the robot
to set the table, to switch certain lights on or off, to bring
certain objects or obtain recipes from the robot.

Apart from person tracking and gesture recognition, the
current components of our system include: a speech recog-
nizer, a dialogue manager and a speech synthesizer. The
software is running on a mobile robot platform equipped
with a stereo camera head that can be rotated with a
pan-tilt unit.

Fig. 2a shows a picture of our system and a person inter-
acting with it. Part of the visual tracking components have
already been integrated in ARMAR [3], a humanoid robot
with two arms and 23 degrees of freedom (see Fig. 2b).

1.2. Related work
Visual person tracking is of great importance not only

for human-robot interaction but also for cooperative mul-
ti-modal environments or for surveillance applications.

a

Fig. 2. (a) Interaction with our development system. Software compo-
nents include: speech recognition and synthesis, person and gesture
tracking and multimodal dialogue management. (b) Part of the compo-
nents have already been integrated in a humanoid robot with 2 arms [3].

There are numerous approaches for the extraction of body
features using one or more cameras.

In their well-known work [11], Wren et al. demonstrate
the system Pfinder, that uses a statistical model of color
and shape to obtain a 2D representation of head and
hands. In addition, Azarbayejani and Pentland [12] show
how to calibrate a stereo camera setup automatically based
on head/hand blob features — thus adding 3D-coordinates
to a Pfinder-like head and hand tracker. Yet, the human sil-
houette extraction method used in Pfinder relies on a static
background assumption, which is — in it’s generic form —
hardly applicable to our mobile robot scenario.

Based on the additional information that is available
from dense stereco processing, Darrell et al. [13] present
their approach for person tracking using disparity images,
color cues and face detection in an integrated framework.
However, they concentrate on silhouette and face tracking,
and do not address the problem of hand tracking.

In order to analyze human pointing gestures, there are
several approaches that concentrate on different parts of
the body. Kahn et al. [18] demonstrate the use of pointing
gestures to locate objects. Their system operates on various
feature maps (intensity, edge, motion, disparity, color) that
are utilized to track head and hands. In [25], Cipolla et al.
use the shape of the hand —i.e., the index finger — from two
different views in order to locate exactly the pointing desti-
nation on a 2-dimensional workspace. Jojic et al. [19] rec-
ognize pointing gestures by decomposing the disparity
image of a standing subject into two parts: an outstreched
arm and the rest of the body. Unlike these approaches, we
combine 3D head and hand tracking with head orientation
in order to model the dynamic motion of pointing gestures
instead of static pose.

Hidden Markov Models — well-known for their use in
speech recognition [21] — have already been applied suc-
cessfully to the field of gesture recognition: In [14], Starner
and Pentland were able to recognize hand gestures out of
the vocabulary of the American Sign Language with high
accuracy. Becker [15] presents a system for the recognition
of T’ai Chi gestures based on head and hand tracking. In
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Fig. 3. Feature for locating head and hands: In the skin color map (a), dark pixels represent high skin-color probability. The disparity map (b) is made up
of pixel-wise disparity measurements; the brightness of a pixel corresponds to its distance to the camera. Finally, skin-colored pixels are spatially clustered

(c); the clusters are depicted by circles.

[16], Wilson and Bobick propose an extension to the HMM
framework, that addresses characteristics of parameterized
gestures, such as pointing gestures. Poddar et al. [17] recog-
nize different hand gestures performed by a TV weather
person. They combine an HMM-based detection of ges-
tures on head and hand movements with spoken keywords.

2. Tracking head and hands

In order to gain information about the location and pos-
ture of a person in the vicinity of the robot, we track the
3D-positions of the person’s head and hands. These trajec-
tories are important features for the recognition of natural
gestures, including pointing gestures. In our approach, we
combine color and range information to achieve robust
tracking performance.

Our setup consists of a fixed-baseline stereo camera
head connected to a standard PC. A commercially avail-
able library' is used to calibrate the cameras, to search
for image correspondence and to calculate 3D-coordinates
for each pixel.

2.1. Locating head and hands

The first and maybe the most important thing to be tak-
en into consideration when designing a tracking system is
the choice of features. As we aim for real-time operation,
we decided to implement a fast 3D-blob tracker. Head
and hands can be identified by color as human skin color
clusters in a small region of the chromatic color space
[20]. To model the skin-color distribution, two histograms
(S" and S7) of color values are built by counting pixels
belonging to skin-colored and not-skin-colored regions
respectively, in sample images. By means of the histograms,
the ratio between P(S'|x) and P(S |x) is calculated for
each pixel x of the color image, resulting in a gray-scale
map of skin-color probability (Fig. 3a).

A combination of morphological operations with a 3 x 3
structuring element is applied to the skin-color map: first, a
dilation connects neighboring pixels in order to produce

! SRI Small Vision System, http://www.videredesign.com/svs.htm.

closed regions. Then a combination of two erosions elimi-
nates isolated pixels. A final dilation is used to roughly
restore the original region size.

In order to find potential candidates for the coordinates
of head and hands, we search for connected regions in the
thresholded skin-color map. For each region, we calculate
the centroid of the associated 3D-pixels which are weighted
by their skin-color probability. If the pixels belonging to
one region vary strongly with respect to their distance to
the camera, the region is split by applying a k-means clus-
tering method (see Fig. 3c). We thereby separate objects
that are situated on different range levels, but accidentally
merged into one object in the 2D-image.

A mobile robot will have to cope with frequent chang-
es in light conditions. Thus, it is essential to initialize the
color model automatically, and to continuously update
the model to accommodate changes. In order to do this,
we search for a face in the camera image by running a
fast face detection algorithm [1] asynchronously to the
main video loop (see Fig. 1). Whenever a face is found,
a new color model is created based on the pixels inside
the face region. Two things are done to prevent the color
model from being impaired by a wrongly detected face:
first, the new color model will only be accepted if it clas-
sifies a high percentage of pixels inside the face region
positively, and a high percentage of pixels outside the
face region negatively.> Second, the new model is merged
with the existing model using an update factor «. This
factor is chosen such that hard changes in light condi-
tions will be assimilated after some seconds, whereas
occasional misdetections of the face do not impair the
model significantly.

2.2. Single-hypothesis tracking

The task of tracking consists in finding the best hypoth-
esis s, for the positions of head and hands at each time ¢.
The decision is based on the current observation O, and
the hypotheses of the past frames, s,_1,5;_>,.... We have

2 A color model that does not fulfill these requirements would be useless
for head and hand tracking.
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formulated this in a probabilistic framework, which
includes the following 3 components:

e The observation score P,(O,|s).
e The posture score P,(s;).
e The transition score P(s;|s;_1,5;_2,. - .).

With each new frame, all combinations of the 3D-skin-
cluster centroids are evaluated to find the hypothesis s, that
exhibits the highest results with respect to the product of
the 3 scores.

2.2.1. The observation score

P,(O/|s;) is a measure for the extent to which s, matches
the observation O,. In order to evaluate this score, we sum
up the weights of all skin-pixels that can be found inside
ellipses that are placed around the head and hands posi-
tions in s,. The radius of an ellipse is given by the average
size of a human head/hand and is scaled with respect to its
3D position.

2.2.2. The posture score

P,(s,) is the prior probability of the posture. It is high if
the posture represented by s, is a frequently occurring pos-
ture of a human body. It is equal to zero if s, represents a
posture that breaks anatomical constraints. To be able to
calculate P,(s;), a model of the human body was built from
training data. The model comprises a distribution of body
height as well as a series of constraints like the maximum
distance between head and hand. As can be seen in
Fig. 4, the position of the hand relative to the head tends
to lie in (but is not limited to) a curved region In addition,
a 3-dimensional gaussian mixture model was trained on
labeled hand positions, thus representing a probability dis-
tribution of hand-positions relative to the head (see Fig. 4).

2.2.3. The transition score
P(s;|s,-1,52,...) is a measure for the probability of s,
being the successor of the past frames’ hypotheses.

Fig. 4. Observed positions of the right hand relative to the head (depicted
by a circle) over a time of 2 min.
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Fig. 5. The transition score considers the distance d between the predicted
position and the currently measured position x;,.

Let x, denote the position of a body part in s,.
According to Fig. 5, the distance between the predicted
position and the measured position is given by
d=|x,_y + (x,—1 — x,_2) — x;||. The transition score for
body part x is then related to d like follows:

 €) (1)

where dp.x 1s a limit for the natural motion of the respec-
tive body part in the time between the frames. The small
value e guarantees that the score remains positive.® The fi-
nal transition score is the product of the three body parts’
transition scores.

Our experiments indicate that by using the described
method, it is possible to track a person robustly, even when
the camera is moving and when the background is clut-
tered. The tracking of the hands is affected by occasional
dropouts and misclassification. Reasons for this can be
temporary occlusion of a hand, a high variance in the visu-
al appearance of hands and the high speed with which peo-
ple move their hands.

Pi(si|s—1,8i-2,...) = max(l —

max

2.3. Multi-hypothesis tracking

Accurate tracking of the small, fast moving hands is a
hard problem compared to the tracking of the head. Decid-
ing which hand is actually the left or the right one is espe-
cially difficult. Given the assumption that the right hand
will in general be observed more often on the right side
of the body, the tracker could perform better, if it were able
to correct its decision from a future point of view, instead
of being tied to a (wrong) decision it once made.

We implemented multi-hypotheses tracking to allow
such kind of rethinking: At each frame, an n-best list of
hypotheses is kept, in which each hypothesis is connected
to it’s predecessor in a tree structure. The tracker is free
to choose the path, that maximizes the overall probability
of observation, posture and transition. The algorithm per-
forms the following steps:

(1) Build a list of all hypotheses s, whose P, and P,
scores exceed a minimum threshold.

(2) For each of these m new hypotheses calculate P, with
respect to each of the n last frame’s hypotheses. This

3 ..
P(s—S;_1,5:_2,...) should always be positive, so that the tracker can
recover from erroneous static positions.
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Fig. 6. Percentage of frames with hand-tracking errors in relation to the
number of hypotheses per frame (n).

leads to a total score P, P, P, for each combina-
tion of old and new hypotheses.

(3) Select the n best hypotheses from this list of m - n
combinations. Add each of them as child to their
parent hypothesis.

(4) Remove tree branches that have no successor in the
current frame’s list of hypotheses. Also remove
branches that split from the currently best branch
more that x seconds ago.4

(5) Normalize the total scores of the remaining current
hypotheses so that they sum up to 1.

The introduction of multi-hypothesis tracking improves
the performance of hand-tracking significantly. Fig. 6
shows the reduction of hand-tracking errors by increasing
the number n of hypotheses per frame. In order to detect
tracking errors, we labeled head and hand centroids manu-
ally. An error is assumed, when the distance of the tracker’s
hand position to the labeled hand position is higher than
0.15 m. Confusing left and right hand therefore counts as
tWO errors.

3. Head orientation

A body of literature suggests that humans are generally
interested in what they look at [4-6]. In addition, recent
user studies reported strong evidence that people naturally
look at the objects or devices with which they interact [7,9].
In our recorded data, we also noticed that people tend to
look at pointing targets in the begin- and in the hold-phase
of a gesture (see section 4). This behavior is likely due to
the fact that the subjects needed to (visually) find the
objects at which they wanted to point.

In order to evaluate, whether this behavior can be used
to improve pointing gesture recognition, we need to obtain
spatial information about the user’s focus. A practical rea-

4 We freeze that part of the trajectory that is older than x = 1 s, because
in a real-time application we do not want to delay the following
interpretation of the tracker’s output too much. This would conflict with
the responsiveness of the system.
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Fig. 7. For head pose estimation, intensity and disparity images of the
head are scaled to a constant size of 24 x 32 pixel and then classified by
ANNE.

son to use head orientation to estimate a person’s focus of
attention, is, that in scenarios addressed in this work, head
orientation can be estimated with non-intrusive methods
while eye gaze can not. In previous work [2], we found that
robust head pose estimation results could be achieved using
an appearance based approach, where head pose is estimat-
ed from facial images using artificial neural networks
(ANN). This approach has proven to work with high-reso-
lution as well as with low-resolution images.

Changes in light condition are one of the main problems
of image-based approaches. In order to decrease the prob-
lem, we incorporate the disparity image into the ANN’s
input pattern. This has been shown to reduce the classifica-
tion error significantly under changed light conditions [23].

The networks we use have a total number of 1597 neu-
rons, organized in 3 layers (see Fig. 7). They were trained
with standard back-propagation in a person-independent
manner on sample images of rotated heads. Ground truth
for the training samples was obtained using a magnetic
pose tracker.

The procedure for head pose estimation works like fol-
lows: in each frame, the head’s bounding box — as provided
by the tracker — is resampled to a size of 24 x 32 pixels and
then histogram normalized. Two neural networks, one for
pan and one for tilt angle, process the head’s intensity and
disparity image and output the respective rotation angles.
In our test-set, the mean error of person-independent head
orientation estimation was 9.7° for pan- and 5.6° for tilt-
angle.

4. Recognition of pointing gestures

When modeling pointing gestures, we try to model the
typical motion pattern of pointing gestures — and not only
the static posture of a person during the peak of the ges-
ture. We decompose the gesture into three distinct phases
and model each phase with a dedicated HMM. The fea-
tures used as the models’ input are derived from tracking
the position of the pointing hand as well as position and
orientation of the head.
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4.1. Phase models

According to [8], the temporal structure of hand ges-
tures can be divided into three phases: preparation, peak
and retraction. Knowing the characteristics of these phases
may help in the temporal segmentation of gestures from
other hand movements.

We recorded 210 pointing gestures performed by 15 dif-
ferent persons. Looking at the pointing gestures in this
dataset, we could easily identify the following phases in
the movement of the pointing hand:

e Begin (B): the hand moves from an arbitrary starting
position towards the pointing target.

e Hold (H): the hand remains motionless at the pointing
position.

e End (E):
position.

the hand moves away from the pointing

Instead of using one HMM for the complete gesture, we
decided to train one dedicated HMM for each of the three
phases. The main reason for that is, that we want to be able
to detect the hold phase separately. Identifying the hold-
phase precisely is of great importance for the correct esti-
mation of the pointing direction. However, the hold-phase
has the highest variance in duration and can often be very
short (see Table 1), thus potentially showing little evidence
in an HMM which models the complete gesture.

The topology of the HMMs has been determined exper-
imentally and is depicted in Fig. 8. Given the amount of
available training data (see Section 5), the three phases’
models Mg g g have been found to perform best with three
states each,” and an output probability that is modeled by a
mixture of two Gaussians per state. In addition to the
phase models there is a null-model M, that is trained on
sequences that are any hand movements but no pointing
gestures. M, acts as a threshold for the phase models’ out-
put. All models were trained by means of the EM-Algo-
rithm using the 5-dimensional feature vector presented in
Section 4.3.

4.2. Segmentation

For the task of human-robot interaction we need to do
run-on recognition, meaning that a pointing gesture has to
be recognized immediately after it has been performed. As
a consequence, we have to analyze the observation
sequence each time a new frame has been processed. There
is no chance to correct a wrong decision afterwards.

The length of the three phases varies strongly from one
gesture to another. Any fixed size classification window
would either contain additional non-phase hand move-
ments or only a fraction of the gesture phase. In both cases,

5> As the gesture is already decomposed into three dedicated HMM:s,
there is no semantic meaning of the single states of each HMM.

Table 1
Average length u and standard deviation ¢ of pointing gesture phases
1 (s) g (s)
Complete gesture 1.75 0.48
Begin 0.52 0.17
Hold 0.72 0.42
End 0.49 0.16

A number of 210 gestures performed by 15 test persons have been

evaluated.
ME E é ; %

Fig. 8. For modeling the phases of pointing gestures, 3-state HMMs (
Gaussians per state) are used. An ergodic HMM represents non- gesture
sequences.

the HMM would not match well with the observation.
Therefore, we follow an approach presented in [15] and
classify not only one, but a series of sequences s; .
These sequences have different sizes, but they all end
with the current frame. The sizes vary between u =+ 20
according to Table 1, thus covering the range of phase
lengths observed in training. For each of the phases
p € {B,H,E}, we search for the ideal subsequence §,, that
contains nothing but the complete gesture phase. We find

§, by classifying all sequences and selecting the one with
the highest output probability.® Because P(§ $p|Mo) repre-
sents the probability that §, is not part of a pointing ges-
ture, we use it to normalize the phase-models’ output
probabilities.

5, =argmax log P(s)._,|M,) )
P, =log P(5,|M,) — log P(5,|M,)

In order to detect a pointing gesture, we have to search for
three subsequent time intervals that have high output prob-
abilities Pp, Py and Pg. Ideally, the respective model would
significantly dominate the other two models in its interval.
But as Fig. 9 shows, M tends to dominate the other mod-
els in the course of a gesture. That is why we detect a point-
ing gesture whenever we find three points in time,
tp<ty<tg, so that

Py(tz), Py (ty), Pe(te) >0 3)
Pr(tg) >Pp(tr)
PB(IB) >PE(lB)

% As pointed out by [15], this can be done quickly by running only one
pass of the Viterbi algorithm on the longest sequence.
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Fig. 11. Feature sequence of a typical pointing gesture.

Once a gesture has been detected, its hold-phase is being
processed for pointing direction estimation (see Section
4.4), and the system is set to sleep for a small amount of
time to avoid the same gesture being recognized multiple
times.

2 4 6 8 10 12 14

Fig. 9. Log-probabilities of the phase-models during a sequence of two
pointing gestures.

A 4

Fig. 10. The hand position is transformed into a cylindrical coordinate
system.

4.3. Features

We evaluated different transformations of the hand
position vector, including cartesian, spherical and cylindri-
cal coordinates.” In our experiments it turned out that
cylindrical coordinates (6,r,y) of the hands (see Fig. 10)
produce the best results for the pointing task.

The origin of the hands’ coordinate system is set to the
center of the head, thus we achieve invariance with respect
to the person’s location. As we want to train only one mod-
el to detect both left and right hand gestures, we mirror the
left hand to the right hand side by changing the sign of the
left hand’s x-coordinate. Since the model should not adapt
to absolute hand positions — as these are determined by the
specific pointing targets within the training set — we use the
deltas (velocities) of 6 and y instead of their absolute
values.

In order to incorporate head orientation into the feature
vector, we calculate the following two features:

HHR :|0Head - 0Hand|

ff’HR :|¢Head - ¢Hgnd|

Opr and ¢ yr are defined as the absolute difference between
the head’s and the hand’s azimuth and elevation angle
respectively. Fig. 11 shows a plot of all feature values dur-
ing the course of a typical pointing gesture. As can be seen
in the plot, the values of the head-orientation features 0z
and ¢yr decrease in the begin-phase and increase in the
end-phase. In the hold-phase, both values are low, which
indicates that the hand is “in line” with the head
orientation.

7 See [22] for a comparison of different feature vector transformations
for gesture recognition.
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Thead orientation

Fig. 12. Different approaches for estimating the pointing direction. (The
lines were extracted in 3D and projected back to the camera image.)

0.1 0

0.270-1

Fig. 13. A principal component analysis of the 3D pixels around the
center of the hand reveals the orientation of the forearm (arrow).

4.4. Estimation of the pointing direction

We explored three different approaches (see Fig. 12) to
estimate the direction of a pointing gesture: (1) the line of
sight between head and hand, (2) the orientation of the
forearm, and (3) head orientation. While the head and
hand positions as well as the forearm orientation were
extracted from stereo-images, the head orientation was
measured by means of a magnetic sensor.

In order to identify the orientation of the forearm, we
calculate the covariance matrix C of the 3D-pixels that lie
within a 20cm radius around the center of the hand. The
eigenvector e; with the largest eigenvalue (the first principal
component) of C denotes the direction of the largest vari-
ance of the data set. As the forearm is an elongated object,
we expect e; to be a measure for the direction of the fore-
arm (see Fig. 13). This approach assumes that no other
objects are present within the critical radius around the
hand, as those would influence the shape of the point set.
We fo;md that in the hold phase, this assumption generally
holds.

8 Nevertheless, we reject the forearm measurement, when the ratio e;/e,
of the first and the second principal component is <1.5.

x [m]

Fig. 14. Target positions in the test set. Target #6 is equal to the camera
position. The arrows indicate the camera’s field of view.

5. Experiments and results

In order to evaluate the performance of gesture recogni-
tion, we prepared an indoor test scenario with 8 different
pointing targets (see Fig. 14). Test persons were asked to
imagine the camera were a household robot. They were
to move around within the camera’s field of view, every
now and then showing the camera one of the marked
objects by pointing on it. In total, we captured 129 pointing
gestures by 12 subjects. The recorded video was then ana-
lyzed offline.

5.1. Pointing direction

For evaluating the quality of pointing direction estima-
tion, we labeled the hold phases manually. Thus, we are not
affected by potential gesture recognition errors. Neverthe-
less, there is an error induced by the stereo vision system,
because the camera coordinates do not comply perfectly
with the manual measurements of the targets’ positions.

In our experiment, the head-hand line achieved an aver-
age precision of 25°, allowing for 90% correct target iden-
tification (see Table 2). The forearm line performed
noticeably worse than the head-hand line. We believe that
this is mainly the result of erroneous forearm measure-
ments.’ Unlike the relatively stable head position, the fore-
arm measurements vary strongly during the hold phase.
The results of pointing direction estimation based on head
orientation are comparable to the ones obtained with the
head-hand line. In this experiment, however, head orienta-
tion was not extracted visually, but with a magnetic sensor
attached to the subjects’ head.

5.2. Gesture recognition

In order to determine the gesture recognition perfor-
mance, we used a leave-one-out evaluation strategy;

® The test persons were pointing with an outstretched arm almost every
time, thus reducing the potential benefit even of a more accurate forearm
measurement.
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Table 2

Comparison of three approaches for pointing direction estimation: (a)
average angle between extracted 3D pointing line and ideal line to the
target, (b) percentage of gestures for which the correct target (1 out of 8)
was identified, and (c) availability of measurements during the hold-phase

Head-hand line

Forearm line  Sensor head

orientation
(a) Average error angle  25° 39° 22°
(b) Targets identified 90% 73% 75%

(c) Availability 98% 78% (100%)

i.e., we trained the Hidden Markov models on data from
11 of the 12 subjects and evaluated on the remaining
person. Two measures are used to quantify the perfor-
mance: the recall value is the percentage of pointing ges-
tures that have been detected correctly, while the
precision value is the ratio of the number of correctly
detected gestures to the total number of detected gestures
(including false positives). The results given in Table 3
are averaged over all persons.

To find out whether the HMM-based pointing ges-
ture recognizer can benefit from head orientation, we
ran the evaluation three times with different feature vec-
tors: (1) hand position only, (2) hand position + head
orientation obtained with the attached sensor, and (3)
hand position + head orientation obtained visually with
ANN:Zs.

Our baseline system without head-orientation scored
at about 80% recall and 74% precision in gesture recog-
nition. When head orientation was added to the feature
vector, the results improved significantly in the precision
value from about 74-87%, while the recall value
remained at a similarly high level. In other words, the
number of false positives could be reduced by 50% rela-
tive considering head orientation as an additional cue. It
is interesting to note that although there were noise and
measurement errors in the visual estimation of head ori-
entation, there was no significant difference in gesture
recognition performance between visually and magneti-
cally extracted head orientation.

In addition to gesture detection, we also evaluated
pointing direction estimation on the automatically detect-
ed hold phases. By including head orientation, the aver-
age error was reduced from 19.4° to 16.9°. As the
pointing direction estimation is based on the head- and
hand-trajectories — which are the same in both cases —
the error reduction is the result of the model’s increased
ability of locating the gesture’s hold-phase precisely.

Table 3
Performance of person-independent pointing gesture recognition with and
without including head orientation to the feature vector

Recall (%) Precision (%) Error (°)
No head orientation 79.8 73.6 19.4
Sensor head orientation 78.3 86.3 16.8
Visual head orientation 78.3 87.1 16.9

6. Conclusion

We have demonstrated a real-time vision system which
is able to detect pointing gestures, and to estimate the
pointing direction. The person tracking component inte-
grates color and depth information in a probabilistic
framework in order to robustly obtain the 3D-trajectories
of head and hands. By following a multi-hypotheses
approach, we could improve hand tracking and achieve
about 60% relative error reduction.

We could show that the human behavior of looking at
the pointing target can be exploited for automatic pointing
gesture recognition. By using visual estimates for head ori-
entation as additional features in the gesture model, both
the recognition performance and the quality of pointing
direction estimation increased significantly. In an experi-
ment (human-robot interaction scenario) we observed a
50% relative reduction of the number of false positives pro-
duced by the system and a 13% relative reduction in point-
ing direction error when using the additional head-
orientation features. We explored different approaches for
extracting the pointing direction and found the head—hand
line to be a good estimate.

It is clear that in a natural interaction scenario, pointing
gestures usually co-occur with speech. And although the
pure visual recognition performs well in the domain of
human-robot interaction, we believe that substantial
improvements can be made by considering the multi-modal
nature of the gesture. In [24] we present an attempt to
merge the output of this gesture recognizer with the output
of a speech recognizer. Guided by a multi-modal dialogue
manager, the detection and interpretation of deictic actions
can be improved compared to the results using only one of
the modalities.
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