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ABSTRACT

The goal of transfer learning is to exploit previous experiences and knowledge in order to improve
learning in a novel domain. This is especially beneficial for the challenging task of learning classi-
fiers that generalize well when only few training examples are available. In such a case, knowledge
transfer methods can help to compensate for the lack of data. The performance and robustness against
negative transfer of these approaches is influenced by the interdependence between knowledge repre-
sentation and transfer type. However, this important point is usually neglected in the literature; instead
the focus lies on either of the two aspects. In contrast, we study in this work the effect of various
high-level semantic knowledge representations on different transfer types in a novel generic transfer
metric learning framework. Furthermore, we introduce a hierarchical knowledge representation model
based on the embedded structure in the semantic attribute space. The evaluation of the framework on
challenging transfer settings in the context of action similarity demonstrates the effectiveness of our
approach compared to state-of-the-art.

c© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Instead of learning new concepts in isolation, humans have
the ability to consider connections to previously obtained skills
and experiences, which makes our learning process extremely
efficient (Reder and Klatzky (1994)). In psychology, this skill
is known as knowledge transfer or transfer learning (Wood-
worth and Thorndike (1901)). It gives us humans the advan-
tage of learning new concepts faster and with a high initial per-
formance when using only few trials or examples (Torrey and
Shavlik (2009)). In contrast, most machine learning algorithms
require a large number of training examples, since training only
relies on domain specific data, instead of incorporating prior
knowledge (Fei-Fei (2006)). However, in cases when training
data is scarce or not available, such methods can not be applied
or are unable to extract a useful model, and thus fail to general-
ize well. Therefore, there is a growing interest in the Machine
Learning Community to mimic this human ability. A typical
task that benefits from knowledge transfer is one- and zero-shot
learning (Bart and Ullman (2005); Farhadi et al. (2009); Lam-
pert et al. (2009)).
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Another problem of many machine learning models is their
assumption that training samples are drawn according to the
same probability distribution as the unseen test samples (Valiant
(1984)). Nevertheless, this hypothesis does not always hold in
practical problems, resulting in a reduction of generalization
properties. For instance, consider you have built a robust clas-
sifier to distinguish between different sports actions and would
like to use the same system on more general videos found on
YouTube. Usually, this would require an expensive data collec-
tion and annotation process. However, using transfer learning
methods, it is possible to re-use an established model to save a
significant amount of labeling effort (Pan and Yang (2010)).

According to Pan and Yang (2010), transfer learning research
tries to solve one or more of the following three problems:

1. “What to transfer?”, asks what type of knowledge repre-
sentation is most suitable to be transferred across domains.
Hence, an important feature of the transferred knowledge
is its ability to encode information that is usable and share-
able between tasks.

2. “How to transfer?”, asks how the transferred knowledge
from the source domain can be incorporated in the learning
of the target task.

3. “When to transfer?”, asks when transfer learning is ben-
eficial, since knowledge transfer can sometimes decrease
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the effectiveness of learning in the target domain (negative
transfer). This can for instance happen, when the source
and target tasks are very different.

The focus of our work lies on the type of information to trans-
fer across domains, hence on answering the question: What to
transfer? and consequently of its effect on different types of
transfer methods. There are three common approaches in that
direction:

1. Feature representation transfer, where a knowledge repre-
sentation model is learned or adopted for the target do-
main, based on relevant information in the source do-
main (Liu et al. (2011b); Pan et al. (2011)).

2. Parameter transfer, where models (or parameters) are
learned in the source domain and then used to regularize
or to be included as a prior in the model learning of the
target task (Nater et al. (2011)).

3. Instance transfer, where all or some of the samples in the
source domain are re-used in the learning of the target task
in order to overcome the low number of target training
samples (Lam et al. (2010)).

Unlike previous works, which analyze these transfer types
separately (e.g. Lampert et al. (2009); Zhang and Yeung (2010);
Lam et al. (2010)), we believe that they should be consid-
ered jointly. The choice of the feature representation and how
the knowledge is modeled will eventually influence the effi-
ciency of all three approaches: the representation-, instance-
and parameter transfer. For example, when using color distri-
butions learned on sea animals as a low-level representation,
this most likely will generalize poorly to a domain of bird cat-
egories and result in a bad performance. However, learning the
meta-relations between the categories or the visual semantic at-
tributes (e.g. has-head, is-round and has-stripes) would re-
sult in constructing a knowledge space that can be easily shared
between various domains. Such high-level semantics are less
likely to be influenced by the low-level feature distribution,
and consequently form an adequate knowledge representation
to be transferred across domains. In transfer metric learning
literature, this observation is usually ignored and instead the
focus lies on parameter transfer while only using a low-level
knowledge representation (Zhang and Yeung (2010); Zha et al.
(2009)).

Another common assumption in the transfer learning litera-
ture is that the source data set is much more diverse and com-
plex than the target set and thus the experimental evaluation
protocol is designed accordingly (e.g. Farhadi et al. (2009);
Lampert et al. (2009); Rohrbach et al. (2011)). However, col-
lecting and annotating new data is an expensive effort. While
we might create data sets of hundreds of action categories there
is still tens of thousands of “unseen” classes (i.e. with no train-
ing examples). Hence, it seems that it is more likely that we will
have a small and simple source domain against a large and di-
verse target domain. Moreover, the usual case in most research
fields is to first focus on solving simple problems before mov-
ing on to more complex ones. For instance, the action recogni-
tion community started with the task of classifying simple ac-
tions in controlled environments (e.g. Schüldt et al. (2004)) and

then slowly moved to the complex Action Similarity Labeling
(ASLAN) Challenge proposed by Kliper-Gross et al. (2012),
and beyond. Thus, it would be beneficial if each time we switch
to a more challenging task, all previously collected data and
experience could be successfully used to improve task perfor-
mance in the new complex domain. Therefore, we address in
our work an evaluation setup where the number and complex-
ity of categories in the source domain is much lower than in
the target domain. Such a setup imposes a greater challenge to
transfer learning approaches.

In conclusion, the contribution of our work is as follows:

• We show the benefits of using high-level semantics for
transfer metric learning.

• We propose a novel hierarchical knowledge representation
that encodes the embedded semantic structure of category
similarities in the attribute space, and show its superior
performance to other semantic models.

• We introduce a novel generic framework for transfer met-
ric learning that improves the transfer performance and re-
duces the negative transfer effect.

• We suggest a realistic and challenging evaluation proto-
col for transfer learning, where the target domain is much
more diverse and complex than the source domain.

This work is an extended version of Al-Halah et al. (2014b).
The main additional contribution is an extended evaluation, and
discussion of the results. In the added experiments, the empha-
sis lies on the analysis of how the knowledge complexity of the
source sets affects the transfer process.

2. Related Work

Transfer learning has attracted a lot of attention in the last
years, and several approaches were proposed in various fields.
Since, it is out of scope of this work to summarize all past re-
search efforts, we refer the interested readers to the comprehen-
sive surveys by Pan and Yang (2010), and Cook et al. (2013),
and focus on the most related sub-fields.

Transfer metric learning
While standard supervised and semi-supervised metric learn-
ing are widely popular (cf. the survey by Bellet et al. (2013)),
to the best of our knowledge only two works exist that ana-
lyze the application of metric learning to the problem of knowl-
edge transfer. Zha et al. (2009) propose to integrate multiple
source metrics into a regularized metric learning framework and
make use of log-determinant regularization to minimize the di-
vergence between the source metrics and the target metric. A
drawback of this approach is that it can only represent posi-
tive and zero task correlation, but not negative task correlations.
Therefore, Zhang and Yeung (2010) proposed a unified frame-
work, called Transfer Metric Learning (TML), that models all
three task correlations, while also guaranteeing to find a glob-
ally optimal solution. TML is formulated as a special case of
multi-task learning, where several independent source tasks and
one target task are given, and the relations between the sources



3

Arm 

Spear 

Forward-motion 

Discus-Throw 

Tennis-Serve 

Hammer-Throw 

Javelin-Throw 
f_arm(x) 

f_spear(x) 

f_forward(x) 

- 

- 

- 

f_discus(x) 

f_tennis(x) 

f_hammer(x) 

- 

- 

- 

(a) (b) 
Fig. 1: The attribute-based representation (a) captures some fine-grained visual properties of an action, such as motion pattern, body parts, and
objects; while the category-based representation (b) encodes the overall similarity of a certain action to the various categories.

and the target are jointly modeled when learning the target met-
ric matrix. Compared to the work of Zha et al. (2009), TML
showed a superior performance when the training data is scarce.
Nonetheless, unlike our work, both approaches use parameter
transfer based solely on a low-level feature representation. To
the best of our knowledge, the use of high-level semantics and
the analysis of the impact of different knowledge representa-
tions on the different transfer types have not been addressed
before in the context of transfer metric learning.

Knowledge representation transfer
Most of the previous work tackles the distribution differences
between the source and target domain as a domain adaptation
problem of the low-level features (Pan et al. (2011); Gong et al.
(2012)) or by learning a robust and transferable sparse repre-
sentation (Long et al. (2013)). In contrast to this line of re-
search, we study in this work the robustness of high-level se-
mantic representations in challenging transfer settings. Unlike
the common case of domain adaption, transferring high-level
knowledge representation does not require the availability of
target data at time of representation learning which facilitates
and generalizes the transfer process. Moreover, as we will show
later in the evaluation, high-level semantics exhibit better per-
formance when transferred across data sets compared to low-
level features.

Among the various knowledge models that were introduced
recently in the literature, semantic attributes have gained an
increasing amount of attention. They describe the visual ap-
pearance of an entity and represent an intermediate semantic
layer between the low-level features and class categories. At-
tributes were successfully used in transfer learning applications,
like zero-shot recognition of objects, and actions (Lampert et al.
(2009); Farhadi et al. (2009); Liu et al. (2011a)). Another ap-
proach to represent an instance of an unseen class is by its sim-
ilarity to known categories. This has been applied by Bart and
Ullman (2005) to one-shot object recognition resulting in a sig-
nificant improvement in classification performance compared
to low-level features.

On the other hand, compared to previous representations, hi-
erarchies proved to be effective due to their ability to capture in-
formation at different resolution levels. In fact, there is evidence
from neuroscience, that information in the visual cortex is struc-
tured hierarchically, e.g. for the high-level tasks of recognizing
objects (Riesenhuber and Poggio (1999)) or actions (Giese and
Poggio (2003)). The structure is usually either defined manu-
ally (Zweig and Weinshall (2007)), derived from external lex-
ical resources like WordNet (Rohrbach et al. (2011); Al-Halah
and Stiefelhagen (2015)), or based on the similarity in low-
level feature space (Salakhutdinov et al. (2010)). However, the
manual design of hierarchies is very time consuming, and con-
structing a hierarchy based on the similarity of low-level data
is not favorable for transfer learning, since the feature distribu-
tions in source and target may differ significantly. Using lexical
databases may sometimes be a good alternative, still in many
cases, they are either not complete or not suitable to model all
types of information. For example, WordNet does not contain
verb-noun combinations to sufficiently describe sports actions,
such as discus-throw and javelin-throw. To overcome the afore-
mentioned problems, we propose a hierarchical model that is
learned from the embedded structure in the attribute space and
encodes the relative similarities between categories.

Defining a “good” semantic vocabulary is considered an im-
portant aspect of the high-level representations. Issues like di-
versity, coverage and descriptiveness control the quality of the
defined semantics. While this aspect is out of the scope of
this paper, recent work addressed this problem in the domain
of object recognition using web-based weak supervision (Div-
vala et al. (2014); Berg et al. (2010)), or by leveraging lexical
ontologies (Rohrbach et al. (2010)). Incorporating a module to
automatically mine good semantics from the source set is quite
beneficial for transfer metric learning as it would alleviate the
need for human supervision and automate the whole knowledge
transfer process.

Transfer Learning Evaluation Protocol
In the evaluation of transfer learning approaches, it is com-
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Fig. 2: The learned hierarchical representation of action classes in
Olympic Sports where actions are grouped based on their intra-class
similarity in the attribute space.

monly assumed that the target set consists of fewer and less
diverse classes than the source set (e.g. Lampert et al. (2009);
Farhadi et al. (2009); Liu et al. (2011a); Bart and Ullman
(2005); Zhang and Yeung (2010)). Even in the large-scale
evaluation of Rohrbach et al. (2011), where different transfer
approaches for zero-shot object recognition were tested, the
source set contained four times more classes than the target
set. In this work, we suggest the opposite experimental set-
tings, i.e. the target is much more complex than the source set,
resulting in a more challenging evaluation task.

3. Approach

3.1. Semantic Similarity Spaces

Most transfer learning approaches used for object and action
recognition are based on low-level features (e.g. Davis et al.
(2007); Guillaumin et al. (2009); Zhang and Yeung (2010); Zha
et al. (2009)). However, we believe that semantics at differ-
ent levels of complexity can be a better representation for the
transfer of source knowledge across domains. While the feature
similarity space is usually high-dimensional and dependent on
the data distribution in the source domain, the semantic simi-
larity space is lower dimensional, concise, and more robust to
changes in the data distributions between target and source do-
mains. In the following, we will describe the two most common
semantic spaces that are used as an intermediate representation,
the attribute similarity space and the category similarity space.
In the former, instances are represented by their visual proper-
ties, and in the latter, by their resemblance to other previously
learned categories. Furthermore, we introduce a third and novel
similarity space, the hierarchical similarity space. Here, the in-
stances are represented by a hierarchical structure, that captures
their visual properties at different resolution levels.

3.1.1. Attribute Similarity Space
Attributes define an intermediate representation between

low-level features and high level categories (Lampert et al.
(2009); Farhadi et al. (2009)). Semantic attributes describe
an entity regarding its visual appearance (e.g. is-round),

parts (e.g. has-ears), and motion patterns (e.g. forward-motion).
Hence, they can be easily shared across categories and even
used to predict unseen classes if the classes can be described in
terms of the same vocabulary. In the attribute similarity space
A, the different semantic attributes span the bases of the space,
where each axis encodes the presence of one of the attributes
as well as its intensity (or confidence for binary attributes) in
a certain data instance, see Figure 1a. Samples that belong to
the same category are close to each other inA since they share
the same properties, and they will form a tight cluster of points
that are distinguishable from other samples of different cate-
gories. Therefore, the lower the distance between points in A,
the more attributes they have in common, and consequently,
the more similar they are conceptually. The samples in the d-
dimensional feature space Xd are mapped to spaceA using:

fA(x) : Xd → An and
fA(x) = [ fa1 (x), fa2 (x), . . . , fan (x)]T ,

(1)

where fai (x) is the prediction score of attribute ai on instance x,
and n is the number of defined attributes.

3.1.2. Category Similarity Space
Humans do not only use visual properties to describe entities

in their environment, but also inter-class relationships. Con-
sider for example the action class triple-jump; it can be de-
scribed as an action similar to the classes run and jump. This
intra-class similarity pattern is not specific to a certain sample
of triple-jump, rather it characterizes all samples that belong to
this category. In that sense, the category similarity space C pro-
vides a meaningful semantic space to compare different actions
in terms of their similarity patterns to previously learned cate-
gories (Bart and Ullman (2005)). In C, the bases are spanned by
the predefined categories, where each axis encodes the resem-
blance of a sample to a learned category, see Figure 1b. Sam-
ples from the feature space are mapped to C using:

fC(x) : Xd → Cm and
fC(x) = [ fc1 (x), fc2 (x), . . . , fcm (x)]T ,

(2)

where fci (x) is the prediction score of category ci on instance x,
and m is the number of categories.

3.1.3. Hierarchical Similarity Space
A common property of the previously defined spaces is that

both of them represent semantics at a single layer of resolution.
That is, both of them ignore the implicit structure that exists in
the semantic space. Such structure allows us to have semantics
depicted at various levels of resolution or complexity, which
enriches the knowledge obtained in the source domain and pro-
vides a better semantic representation of samples. Consider for
example the action categories walk, jump and jump-forward.
Since the latter class is partially similar to the former ones, it
would be better represented by a super-class consisting of the
other two categories, i.e. by walk-jump. Then learning the com-
mon pattern between these two classes could provide a higher
category of semantics that improves the classification perfor-
mance for jump-forward.
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Fig. 3: The correlations of semantic attributes on (a) Olympic Sports
and (b) ASLAN (Best seen in color).

Constructing such a hierarchy based on low-level features
will not necessarily result in a semantically meaningful struc-
ture. Hence, we propose to learn the structure of this hierarchi-
cal model by exploiting the similarity between categories in the
attribute space. Attributes correspond to observable properties
of the categories, and the more attributes are shared between a
couple of categories, the higher is the overall visual similarity
between the pairs. Thus, assuming that each of the action cate-
gories is described with a vector of semantic attributes of length
n (aci = {a j}

n
1), we can exploit this representation by defining

a distance function f to group categories close to each other
based on their similarity in the attribute space (Figure 2), i.e.:

f : C × C → R : f (ci, c j) = d(aci , ac j ), (3)

where d(·, ·) is a distance function in the attribute space.
We construct a hierarchical representation by applying an ag-

glomerative hierarchical clustering algorithm over the attribute
representation of the classes to get a dendrogram depicting the
hierarchical clustering result. The dendrogram is then used to
construct the final action hierarchy by interpreting the action
classes as leaf nodes and the intermediate clusters at different
similarity threshold levels as inner nodes. The sub- and super-
cluster relations are translated to is-a relations in the tree struc-
ture. For our case of using binary attributes to describe the var-
ious action classes, we use a hierarchical k-means clustering
algorithm with f (ci, c j) =‖ aci , ac j ‖1 to capture the similarity in
An. Then instances x ∈ Xd are represented in the hierarchical
similarity spaceH using:

fH (x) : Xd → Hk and
fH (x) = [ fn1 (x), fn2 (x), . . . , fnk (x)]T ,

(4)

where fni (x) is the prediction score of node i in the hierarchy,
and k is the number of nodes. The node classifiers are trained in
a child-vs-parent manner, i.e. if pos(ni) =

⋃
pos(n j) is the posi-

tive set of node ni, where n j ∈ child(ni), then the classifier fni is
trained on pos(ni) as the positive set against {pos(np)/pos(ni)}
as the negative set, where np = parent(ni).

3.2. Decorrelated Normalized Space
It is important to notice that when the semantic similarity

spaces are learned, also the correlations of the semantics are
implicitly modeled in theses spaces. Most likely, these corre-
lations are significantly different between the source and the
target domain since they arise from the respective semantics

distribution in each domain. For example, Figure 3 shows the
respective different correlations of semantic attributes in two
different data sets. Maintaining such knowledge in the repre-
sentation when transferring across domains will likely results
in a negative transfer effect (Pan and Yang (2010); Torrey and
Shavlik (2009)). Therefore, it is quite important to eliminate
the correlations learned in the source domain from the semantic
spaces in order to restrain the negative transfer.

The decorrelation of the semantic similarity space S (S ∈
{A,C,H}) can be efficiently achieved using the whitening
transformation. Such a transformation has been successfully
used before for attribute decorrelation (Al-Halah et al. (2014a))
and for removing co-occurrence patterns from the bag-of-words
model (Jegou and Chum (2012)), for example. The correlations
are modeled by the covariance matrix Ω = YYT where Y rep-
resents the data matrix from space S. By transforming Ω to
the identity matrix, Y is whitened and the data is transformed
to a space S̃ where the bases are decorrelated and given same
importance.

The whitening transformation W of S is obtained by analyz-
ing the covariance matrix Ω such that:

W = VΣ−1/2 and Ω = VΣVT , (5)

where Σ is a diagonal matrix having the eigenvalues of Ω as
its diagonal elements (Σii = λi). V contains in its columns
the relevant eigenvectors of the covariance matrix. To have a
robust estimation of W, we ignore the eigenvectors in V that
correspond to very small eigenvalues (λi < θ), i.e.:

Ŵ = V̂Σ̂−1/2 where Σ̂ii ≥ θ. (6)

To have a better assessment of the similarity, we normalize
the vectors in the truncated whitened space by their norms.
Thus, the samples representation in S is transformed to the
decorrelated normalized space Sdns using:

fSdns (x) = ŴT y/‖ŴT y‖2 where y = fS(x) (7)

3.3. Similarity Metric Learning

In order to measure similarity between samples in the dif-
ferent semantic spaces, we need to learn an appropriate metric.
For that purpose we use the Logistic Discriminant based Metric
Learning (LDML) from Guillaumin et al. (2009) to adapt to the
positive and negative similarity relations in the target data set.

LDML formulates the metric learning problem as a standard
logistic discriminant model where the maximum log-likelihood
is used to optimize the parameters of the model. LDML has
a convex optimization objective which guarantees an optimum
global solution. However, our approach is not restricted to a
certain metric learning method as we will show later in the eval-
uation (Section 4.1).

4. Evaluation

We evaluate our framework using three publicly available
data sets:
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• Olympic Sports (Niebles et al. (2010)), which contains
781 videos of 16 action classes collected from YouTube,
like hammer-throw, tennis-serve and triple-jump. We
use the attribute annotations provided by Liu et al.
(2011a), where the actions are labeled with 40 semantic
attributes describing motion, pose and objects, such as lift-
something, throw-away, two-arms-open and outdoor.

• ASLAN, which has been recently published by Kliper-
Gross et al. (2012), is collected for the main task of
comparing actions (similar/not-similar). It has 432 ac-
tion classes with more than 3600 video samples and each
class has on average 8.5 video samples with more than 100
classes having only one sample each.

• KTH (Schüldt et al. (2004)), which contains six basic ac-
tion classes (i.e. boxing, clapping, waving, jogging, run-
ning, and walking). In our experiments the classes are de-
scribed with 10 semantic attributes by Liu et al. (2011a).

In our experimental settings, we use Olympic Sports (or
KTH) as source and ASLAN as target data set. This addresses a
realistic and very difficult scenario of transfer learning that has
been ignored in previous studies as discussed earlier. Collecting
and labeling samples for actions is time consuming and expen-
sive. Consequently, the labeled data (source set) tends to be
small and simple in terms of diversity and coverage compared
to the target. Our evaluation setup tackles this very challenging
problem because of the high diversity in ASLAN compared to
Olympic Sports (432 to 16 different classes).

As a video descriptor, we use the bag-of-words (BoW) model
based on histograms of oriented gradients and optical flow
(HOGHOF) from Laptev et al. (2008) with a vocabulary of
size 4000. We use that BoW model to train the different classi-
fiers, presented in Section 3.1, on the training split of Olympic
Sports. The features are preprocessed with a power trans-
form (Arandjelovic and Zisserman (2012)) with α = 0.3 before
training a linear support vector machine. The parameters of the
SVM classifiers are estimated using a 5-fold cross validation.
For the decorrelated normalized space, we set θ = 10−8. To sim-
ulate a real transfer learning problem, we do no further training
of classifiers or the BoW model on the target set (ASLAN), and
only the similarity metric is adapted from the available train-
ing data to infer a reasonable comparison metric in each of the
semantic similarity spaces. The threshold of similarity is auto-
matically learned using a linear SVM trained on the distances
between training pairs.

4.1. Importance of Decorrelated Normalized Space
We first evaluate the impact of the proposed decorrelated

normalized space (DNS) on the transfer process effectiveness.
We learn the different knowledge representations on Olympic
Sports and transfer them to ASLAN where we use the view 1
training/testing split as defined by Kliper-Gross et al. (2012).
We test our framework with and without the DNS transforma-
tion.

Furthermore, since our framework is not restricted to a spe-
cific metric learning approach, we test (along with LDML) two
state-of-the-art metric learning methods: ITML (Davis et al.

Table 1: The effect of the decorrelated normalized space (DNS) on the
performance of popular metric learning methods.

Space / Metric ITML LDML KISSME Cov−1 L2 SVM

H 58.38 54.23 55.50 51.03 52.85 57.58
Hdns 60.62 61.80 60.98 56.98 56.33 56.90

A 55.08 57.80 55.50 50.87 54.00 57.50
Adns 57.52 59.00 58.42 56.37 54.83 57.73

C 57.65 57.50 56.77 54.17 54.50 53.17
Cdns 59.82 57.60 61.20 57.23 55.50 57.63

X 55.38 58.95 49.83 49.67 50.00 50.00
Xdns 56.07 52.67 54.33 53.00 56.53 56.05
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Fig. 4: Overall performance of different semantic similarity spaces
regarding various sizes of the target training set. The transferred high-
level semantics clearly outperform the low-level representation.

(2007)) and KISSME (Martin et al. (2012)); and two commonly
used metrics: the Mahalanobis distance using the inverse of the
covariance (Cov−1) and the euclidean distance (L2). Addition-
ally, we train an SVM on the element wise multiplication of the
training pairs [x1.∗x2] as the sixth approach for learning similar-
ities (using the absolute difference |x1− x2| or the concatenation
of the previous two produced inferior performance). We use all
training pairs available in the target and report the accuracy of
the different knowledge representations with and without using
DNS.

In Table 1, we see that in most of the cases (22 out of 24),
the decorrelated space increased the performance of the trans-
fer metric (up to 7% absolute increase). DNS is quite generic,
and it improves the performance of most of the metric learn-
ing approaches. Even when using simple metrics like L2 and
Cov−1, DNS helps to learn a better similarity metric.

On the other hand, both the category and hierarchical spaces
appears to perform better than the attribute model; and the best
performance (61.80%) is obtained by using our hierarchical
model with LDML.

4.2. Knowledge Representation Transfer

We test the performance of different semantic spaces com-
pared to the common low-level similarity space. Similar to the
previous experiment, the various representations are learned in
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Fig. 5: The performance of the different knowledge representations when using instance transfer (a) and its negative transfer effect (b).

Olympic Sports and we evaluate using view 1 in ASLAN. How-
ever, this time we vary the number of training pairs of similar
and dissimilar actions from 5% to 100% of the training set. For
each run, a random subset of the training pairs is selected to
learn the similarity and then evaluated on the test split. This
is repeated 10 times, and we report the average accuracy and
standard error of similarity classification as seen in Figure 4.
For the feature space, we report two methods: the first is using
LDML after reducing the dimensionality to 128 using principle
component analysis since it is intractable to use the full feature
vector with LDML (Guillaumin et al. (2009)). In the second
we use the full feature vector (4000) and train an SVM on the
element wise multiplication similar to Section 4.1.

In compliance with the observations from the previous ex-
periments, we see that the three semantic spaces outperform the
low-level feature space (Figure 4). Moreover, the hierarchical
and category similarity spaces outperform the attribute space
when the training data is scarce. However, when more than half
of the training data is available, the attribute space seems to do
better than the category space while the proposed hierarchical
model outperforms both. This confirms our previous hypothe-
sis on the importance of high-level semantics and their ability
to generalize well when transferred to other domains.

Another interesting aspect of the high-level semantics is their
scalability. The high-level representation is much more com-
pact than its low-level counterpart. For example, in our case
the dimensionality of semantic representations ranges between
16 to 40 while the low-level feature vectors are of 4000 di-
mensions. Consequently, the semantic representations are more
scalable to big data sets since the computation cost of most of
the metric learning algorithm is heavily impacted by the repre-
sentation dimensionality. Moreover, adding new concepts for
the attribute and category similarity spaces results in a linear
expansion in the dimensionality of the similarity space where
only the new concept classifiers need to be trained. Adding a
new concept to the hierarchical space is equivalent to inserting
a leaf node to a binary tree. It requires the retraining of the an-
cestors of that leaf node which is of logarithmic complexity in
term of the number of nodes in the tree. This cost is much lower
than trying to increase the descriptiveness of the low-level fea-
tures which usually results in much higher computation cost.

For instance, adding a new cluster to the bag-of-words requires
rerunning the clustering algorithm over all samples again.

4.3. Instance Transfer

In this transfer setup, a random group of training pairs from
the source (Olympic Sports) are added to the training set in the
target (ASLAN). Similar to the previous experiments, we vary
the size of the target’s training set and report the accuracy. We
also analyze the transfer effect (positive or negative) as the dif-
ference in performance (measured by accuracy) between using
instance transfer and without using it.

We see in Figure 5b that when the target’s data is too small
(less than 25% of the training pairs), both the hierarchical and
attribute spaces take advantage of the additional transferred
samples from the source. However, when the size of target
training set increases, the transferred instances prevent the met-
ric learning to adapt to the actual data distribution of the tar-
get. Hence, it produces a significant negative transfer for all
semantic spaces. Nonetheless, the hierarchical representation
still maintains higher performance compared to the other alter-
natives (Figure 5a).

This type of transfer introduces an extreme change in the data
distribution of the target training set which is not reflected in the
test set, resulting in performance deterioration. It also shows
how the target and source sets are different and how challenging
are the transfer settings.

4.4. Parameter Transfer

In parameter transfer, the parameters learned in the source
domain are used to regularize or to aid the learning task in the
target. The similarity metric learning method LDML does not
allow for parameter transfer in its formulation. Hence, we pro-
pose instead a simple parameter transfer approach based on the
information-theoretic metric learning (ITML) from Davis et al.
(2007). The metric learning problem in ITML is defined as:

min
M

KL(p(x,M0) ‖ p(x,M)), (8)

where KL is the Kullback-Leibler divergence between two
Gaussian distributions corresponding to a prior metric M0 and
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Fig. 6: (a) Comparison of the proposed parameter transfer approach (ITML+PT) to the state-of-the-art (TML) and (b) its robustness using the
various semantic representations to negative transfer effect.

the learned metric M. Additionally, some constraints on the
distances are incorporated in learning the metric:

dM(vi, v j) ≤ u i f (vi, v j) ∈ S
dM(vi, v j) > l i f (vi, v j) ∈ D, (9)

where u and l are the upper and lower bound of distances be-
tween similar (S) and dissimilar (D) pairs respectively.

In Eq. 8, the common assumption is that the data is Gaussian
distributed and the prior M0 is either set to the inverse of the co-
variance matrix or the identity matrix I (euclidean metric). In
contrast, we suggest to adapt ITML to carry on parameter trans-
fer by setting the prior to be the metric learned in the source
data set (M0 = Msource). In other words, following Eq. 8, the
metric learning in the target set is regularized to be close to the
source metric (Msource) while at the same time satisfying the
constraints on the pair distances in the target set (Eq. 9).

We evaluate the parameter transfer setting by learning first
the similarity metric for each of the three semantic spaces
(Section 3.1) in the source set (Olympic Sports) and transfer
that metric using Eq. 8 to the target set (ASLAN). The metric
in Olympic Sports is learned by randomly generating 1500 pairs
of similar and dissimilar actions in the source, and then using
the standard proposed framework to learn the similarity. During
testing, we use the same settings as described in Section 4.2.

We compare ITML with the proposed parameter transfer ap-
proach (ITML+PT) to state-of-the-art transfer metric learning
(TML) from Zhang and Yeung (2010). The parameters for both
ITML and TML are set following the recommendations sug-
gested by Davis et al. (2007) and Zhang and Yeung (2010), re-
spectively.

Interestingly, ITML+PT outperforms TML (Figure 6a).
TML seems to have a saturated performance after using just
15% of the training set and slightly profits from the different
semantic representations. ITML+PT, on the other hand, clearly
takes advantage of the characteristics of the different similarity
spaces and has a higher initial performance. This can be due to
the formulation of TML as a special case of multi-task metric
learning, and the assumption that the tasks (source and target)
share a common data distribution which is not the case here.

We analyze the transfer effect (as in Section 4.3) as the differ-

ence in performance between using the parameter transfer and
without (i.e. setting M0 = I in Eq. 8). While the hierarchical
representation evidently benefits from parameter transfer, both
the attribute and category similarity representations show a neg-
ative transfer effect (Figure 6b). As motivated in Section 1, it
seems that the robustness of the model against negative transfer
is increased when the level of semantic knowledge encoded in it
is higher. After all, the learned meta-information (parameters)
in source domain can still be true in the target even though they
have very different data distributions.

4.5. Effect of the Source Complexity

While Olympic Sports contains videos collected from
YouTube with a lot of variations (like camera motion, occlu-
sion and varying background), KTH contains only simple mo-
tion patterns and is recorded with a uniform background. In
this experiment, we test the effect of replacing Olympic Sports
with the more simpler KTH data set as the source of the transfer
metric learning.

We use a similar setup as in Section 4.4. A similarity ma-
trix (Msource) is learned in KTH (the source set) from a set of
randomly generated pairs of action samples. Then, Msource is
transferred using ITML+PT for metric learning in ASLAN.

Figure 7a shows the performance of the transfer process
when using KTH against Olympic Sports as the source set. In
general, KTH-based transfer performs worse than the alterna-
tive source data set. Another observation is that the KTH-based
transfer performance curves do not monotonically increase as
its Olympic-based counterparts. The performance of the var-
ious KTH-based knowledge representations start to exhibit a
drop when the training set in the target gets bigger than 50%.
This is expected since KTH contains much less variation in its
samples. Hence, it is harder to extract rich semantic represen-
tations and learn useful similarity relations. This is evident in
Figure 7b, where the difference in performance against using
M0 = I (i.e. no parameter transfer) for the KTH-based transfer
is shown. Clearly, the similarity relations learned among the
classes and attributes in KTH do not generalize well to ASLAN
and a significant negative transfer is produced. Nonetheless,
when the training set in the target is tiny (≤ 15%) the transferred
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Fig. 7: Performance of parameter transfer when using KTH as the source set (a) instead of Olympic Sports and (b) its negative transfer effect.

Table 2: Large scale evaluation on view 2 of the ASLAN data set.

Representation Learning in Source Hdns Cdns Adns Xdns

#Dimension 30 16 40 128
LDML 59.18 ± 0.98(62.16) 57.85 ± 1.02(60.57) 57.30 ± 0.58(60.85) 56.97 ± 0.69(60.15)

Representation Learning in Target HOG HOF HNF HOG+HOF+HNF

#Dimension 5000 5000 5000 3 x 5000
√∑

(x1. ∗ x2) 58.55 ± 0.80(61.59) 56.82 ± 0.57(58.56) 58.87 ± 0.89(62.16) 60.08 ± 1.08(63.89)
Hellinger 53.22 ± 0.61(54.19) 53.77 ± 0.72(56.00) 53.77 ± 0.73(55.80) 54.83 ± 0.90(57.18)
Chi-Square 53.28 ± 0.69(54.42) 53.42 ± 0.62(55.79) 53.87 ± 0.72(55.97) 54.97 ± 0.97(57.13)
12 Similarities 59.78 ± 0.82(63.20) 56.68 ± 0.56(58.97) 59.47 ± 0.66(63.30) 60.88 ± 0.77(65.30)

knowledge from the very simple source (KTH) aides the learn-
ing process in the target, performing on par with their Olympic
Sports counterparts. This suggests, that transferring semantics
from simple sources may still be beneficial under harsh transfer
setting (i.e. extremely scarce target training data).

4.6. Full Scale Evaluation

It is common in transfer learning literature to focus in evalu-
ation only on the case when the training data in target is scarce.
However, considering the scenario of a large training set in the
target is also beneficial. Evaluating in such settings helps us to
put the transfer metric learning method in perspective to stan-
dard methods that learn knowledge representation in the target
set and have enough information to adapt well to the target data
distribution.

For that purpose, we evaluate on ASLAN view 2 which has
6000 pairs of similar and dissimilar actions. We follow the
benchmark setup suggested by Kliper-Gross et al. (2012). That
is, a 10-fold cross validation is carried out on view 2 and the
performance is reported in terms of average accuracy and area
under receiver operating characteristic (ROC) curve. For an in-
target representation modeling, we compare to the approach of
Kliper-Gross et al. (2012). They propose to extract three fea-
ture types: HOG, HOF, and HNF (Laptev et al. (2008)); and
learn a BoW model of size 5000 for each to represent video
samples. They use 12 different similarity metrics to compare
actions based on each of these three representations and their
combination. We report in Table 2 the results of their best sin-

gle similarity metric and the results of using the combination of
the 12 metrics as stated in Kliper-Gross et al. (2012).

We notice in Table 2 that the transfer metric method per-
forms as well as the methods that are based on a representation
learned in target domain. Even when 12 different similarities
and 3 feature representations are combined, the gain in perfor-
mance of the in-target method is only 1.7% in accuracy. This is
an impressive performance for the transfer metric learning ap-
proach, bearing in mind the diversity of the target compared to
the source set (432 to 16 classes) and that the data representa-
tion learned in the source was never adapted to model changes
in the target domain. Furthermore, the performance of the dif-
ferent semantic spaces in the transfer metric approach follows
the complexity level of semantics encoded in the model. The
proposed hierarchical representation is doing best, followed by
the category, and attribute spaces.

5. Conclusion and Future Work

We proposed a generic framework for transfer metric learn-
ing and showed the importance of knowledge representation on
different transfer options. In our experiments, we also demon-
strated that high-level semantics have better transfer proper-
ties and encode richer transferable knowledge in comparison to
low-level features. Furthermore, we introduced a hierarchical
representation that models the embedded structure of category
similarities in the attribute space. The proposed hierarchical
model performed best and was more robust to negative trans-
fer effect. In addition, different metric learning methods benefit
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from the proposed transfer framework. We evaluated on very
challenging settings where the target set is much more complex
and diverse in comparison to the source set. Nonetheless, we
showed that even when the knowledge source is limited, trans-
fer learning can still be beneficial if an appropriate semantic
representation is used. Finally, a large-scale evaluation showed
impressive results of the transfer approach; the performance is
on par with methods that use feature representations learned in
the target domain.

So far, we only applied our framework to the Action Similar-
ity task and showed promising results. As future work, we plan
to analyze the performance of our approach in the context of
other problems, and extend it to overcome challenges posed by
the different domains. For instance, in case of recognizing com-
posite activities, that consist of a sequence of multiple actions
and human-object interactions, we expect that modeling and
transferring relationships between the concepts (e.g. actions
and objects) would further boost overall performance. Further-
more, recent advancement in distributional word representation
(Mikolov et al. (2013); Pennington et al. (2014)) showed im-
pressive performance in encoding and transferring knowledge
for zero-shot learning across data sets for both object (Frome
et al. (2013)) and recently action recognition (Xu et al. (2015);
Gan et al. (2015)). Exploiting such representation for transfer
metric learning could be very beneficial since the representa-
tion is learned from large text corpora and requires no human
supervision.
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